论文标题

实验室和野外的不确定性感知盲图质量评估

Uncertainty-Aware Blind Image Quality Assessment in the Laboratory and Wild

论文作者

Zhang, Weixia, Ma, Kede, Zhai, Guangtao, Yang, Xiaokang

论文摘要

盲图质量评估(BIQA)模型的性能通过特征工程和质量回归的端到端优化而显着提高。然而,由于在实验室中模拟的图像和野外捕获的图像之间的分布变化,在处理现实扭曲(反之亦然)时,在具有合成畸变的数据库中训练的模型仍然特别弱。为了面对交叉统计 - 赛纳里奥挑战,我们开发了\ textit {unified} biqa模型,并为合成和现实扭曲而训练它的方法。我们首先要从单个IQA数据库中示例图像对,并计算每对第一个图像质量更高的概率。然后,我们利用忠诚度损失来优化大量此类图像对的BIQA的深神经网络。我们还明确执行了铰链约束,以使优化期间的不确定性估计正常。在六个IQA数据库上进行的广泛实验表明了学习方法在盲目评估实验室和野外的图像质量方面的希望。此外,我们通过使用它来改善现有的BIQA模型来证明拟议培训策略的普遍性。

Performance of blind image quality assessment (BIQA) models has been significantly boosted by end-to-end optimization of feature engineering and quality regression. Nevertheless, due to the distributional shift between images simulated in the laboratory and captured in the wild, models trained on databases with synthetic distortions remain particularly weak at handling realistic distortions (and vice versa). To confront the cross-distortion-scenario challenge, we develop a \textit{unified} BIQA model and an approach of training it for both synthetic and realistic distortions. We first sample pairs of images from individual IQA databases, and compute a probability that the first image of each pair is of higher quality. We then employ the fidelity loss to optimize a deep neural network for BIQA over a large number of such image pairs. We also explicitly enforce a hinge constraint to regularize uncertainty estimation during optimization. Extensive experiments on six IQA databases show the promise of the learned method in blindly assessing image quality in the laboratory and wild. In addition, we demonstrate the universality of the proposed training strategy by using it to improve existing BIQA models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源