论文标题
代数量子场理论中纠缠熵的各个方面
Aspects of Entanglement Entropy in Algebraic Quantum Field Theory
论文作者
论文摘要
在本文中,我们从代数的角度研究了量子场理论的纠缠理论的各个方面。主要的动机是获得有关QFT中纠缠的一般结构的见解,以定义QFT的熵版本。在相反的方向上,我们也有兴趣探索代数QFT中纠缠的任何后果。这可能有助于我们揭示QFT的未知特征,最终目的是找到一个动力学原理,该原理使我们能够构建QFT的非平凡和严格模型。代数方法是在QFT中定义和研究纠缠的自然框架,因此提出上述询问。在操作员代数中对代数QFT和量子信息理论进行独立综述之后,我们重点关注结果。我们使用来自von Neumann代数模块化理论的代数工具,以数学上严格的方式计算纠缠措施和模块化哈密顿量的精确解决方案。这些计算显示模块化汉密尔顿人的明确非本地特征,并帮助我们解决了其他非鲁情计算中出现的歧义。我们还研究了具有来自全球对称性的超选择部门的理论中纠缠熵的各个方面。我们遵循多普里奇,哈格和罗伯茨的代数观点。通过这种方式,我们找到了一个“测量”对称组大小的熵顺序参数,该参数是根据两个相互信息的差异而构成的。此外,我们确定了考虑到这种差异的主要运营商,并获得了一个新的量子信息数量,即熵确定性关系,涉及包含此类运营商的代数。这种确定性关系与冯·诺伊曼代数的亚比例理论保持了内在的联系。
In this thesis, we study aspects of entanglement theory of quantum field theories from an algebraic point of view. The main motivation is to gain insights about the general structure of the entanglement in QFT, towards a definition of an entropic version of QFT. In the opposite direction, we are also interested in exploring any consequence of the entanglement in algebraic QFT. This may help us to reveal unknown features of QFT, with the final aim of finding a dynamical principle which allows us to construct non-trivial and rigorous models of QFT. The algebraic approach is the natural framework to define and study entanglement in QFT, and hence, to pose the above inquiries. After a self-contained review of algebraic QFT and quantum information theory in operator algebras, we focus on our results. We compute, in a mathematically rigorous way, exact solutions of entanglement measures and modular Hamiltonians for specific QFT models, using algebraic tools from modular theory of von Neumann algebras. These calculations show explicitly non-local features of modular Hamiltonians and help us to solve ambiguities that arise in other non-rigorous computations. We also study aspects of entanglement entropy in theories having superselection sectors coming from global symmetries. We follow the algebraic perspective of Doplicher, Haag, and Roberts. In this way, we find an entropic order parameter that "measures" the size of the symmetry group, which is made out of a difference of two mutual informations. Moreover, we identify the main operators that take account of such a difference, and we obtain a new quantum information quantity, the entropic certainty relation, involving algebras containing such operators. This certainty relation keeps an intrinsic connection with subfactor theory of von Neumann algebras.