论文标题

Markoff-Rosenberger三元组和广义卢卡斯序列

Markoff-Rosenberger triples and generalized Lucas sequences

论文作者

Hashim, Hayder, Szalay, László, Tengely, Szabolcs

论文摘要

我们考虑Markoff-Rosenberger方程$$ ax^2+by^2+cz^2 = dxyz $$,带有$(x,y,z)=(u_i,u_j,u_k),$ u_i $ the $ u_i $表示$ i $ i $ th的第一/第二种lucas数量。我们为索引的最小值提供上限,并将结果应用于完全解决混凝土方程,例如我们分别确定仅包含平衡数字和jacobsthal数字的解决方案。

We consider the Markoff-Rosenberger equation $$ax^2+by^2+cz^2=dxyz$$ with $(x,y,z)=(U_i,U_j,U_k),$ where $U_i$ denotes the $i$-th generalized Lucas number of first/second kind. We provide upper bound for the minimum of the indices and we apply the result to completely resolve concrete equations, e.g. we determine solutions containing only balancing numbers and Jacobsthal numbers, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源