论文标题

CGGAN:单个图像飞机的上下文引导的生成对抗网络

CGGAN: A Context Guided Generative Adversarial Network For Single Image Dehazing

论文作者

Zhou, Zhaorun, Shi, Zhenghao, Guo, Mingtao, Feng, Yaning, Zhao, Minghua

论文摘要

对于应用计算机视觉的应用非常需要图像雾化的去除。本文提出了一种新颖的背景引导的生成对抗网络(CGGAN),以进行单图像飞机。其中,一种新颖的新编码器被用作发电机。它由一个序列的特征 - 萃取网络,上下文 - 萃取网和融合网络组成。特征提取网络充当编码器,用于提取雾霾特征。上下文萃取网是一种多尺度的平行金字塔解码器,用于提取编码器的深度特征并生成粗糙的脱雪图图像。 Fusion-NET是解码器,用于获得最终的无雾图像。为了获得更好的结果,在上下文提取解码器的解码过程中获得的多尺度信息用于指导融合解码器。通过将额外的粗解码器引入原始编码器码头,CGGAN可以更好地利用编码器提取的深度特征信息。为了确保我们的CGGAN在不同的雾霾场景中有效工作,这两个解码器采用了不同的损失功能。实验结果表明,我们提出的CGGAN的优势和有效性,比现有最新方法的证据改进。

Image haze removal is highly desired for the application of computer vision. This paper proposes a novel Context Guided Generative Adversarial Network (CGGAN) for single image dehazing. Of which, an novel new encoder-decoder is employed as the generator. And it consists of a feature-extraction-net, a context-extractionnet, and a fusion-net in sequence. The feature extraction-net acts as a encoder, and is used for extracting haze features. The context-extraction net is a multi-scale parallel pyramid decoder, and is used for extracting the deep features of the encoder and generating coarse dehazing image. The fusion-net is a decoder, and is used for obtaining the final haze-free image. To obtain more better results, multi-scale information obtained during the decoding process of the context extraction decoder is used for guiding the fusion decoder. By introducing an extra coarse decoder to the original encoder-decoder, the CGGAN can make better use of the deep feature information extracted by the encoder. To ensure our CGGAN work effectively for different haze scenarios, different loss functions are employed for the two decoders. Experiments results show the advantage and the effectiveness of our proposed CGGAN, evidential improvements over existing state-of-the-art methods are obtained.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源