论文标题

关于Lebesgue的不平等现象

About Lebesgue inequalities on the classes of generalized Poisson integrals

论文作者

Serdyuk, A. S., Stepaniuk, T. A.

论文摘要

对于功能$ f $,可以用卷积的形式表示$ f(x)= \ frac {a_ {0}} {2}+\ frac {1}π\ int \ limits _ { - π}^π\ sum \ limi ts_ {k = 1}^{\ infty} e^{ - αk^{r}}}} \ cos(kt- \ frac {βπ} {2} {2})φ(x-t)dt $, $φ\ perp1 $,$α> 0,\ r \ in(0,1)$,$β\ in \ mathbb {r} $,我们建立了form \ begin {equation*}} \ | f-s_ {n-1} {n-1} {n-1}} feben \ begin {equination \ begin {equination*}的lebesgue-type不等式e^{ - αn^{r}} \ left(\ frac {4} {π^{2}}} \ ln \ frac {n^{1-r}} {αr} {αr} +γ_{n} +γ_{n} \ end {equation*}这些不等式均针对所有数字$ n $大于某些数字$ n_ {1} = n_ {1}(α,r)$大的数字$ n $,该$ n_ {1} = n_ {1} $,通过参数$α$和$ r $进行建设性地定义。我们证明存在一个函数,因此可以更改给定估计中的符号“ $ \ leq $”,以“ $ = $”更改。

For the functions $f$, which can be represented in the form of the convolution $f(x)=\frac{a_{0}}{2}+\frac{1}π\int\limits_{-π}^π\sum\limits_{k=1}^{\infty}e^{-αk^{r}}\cos(kt-\frac{βπ}{2})φ(x-t)dt$, $φ\perp1$, $α>0, \ r\in(0,1)$, $β\in\mathbb{R}$, we establish the Lebesgue-type inequalities of the form \begin{equation*} \|f-S_{n-1}(f)\|_{C}\leq e^{-αn^{r}}\left(\frac{4}{π^{2}}\ln \frac{n^{1-r}}{αr} + γ_{n} \right) E_{n}(φ)_{C}. \end{equation*} These inequalities take place for all numbers $n$ that are larger than some number $n_{1}=n_{1}(α,r)$, which constructively defined via parameters $α$ and $r$. We prove that there exists a function, such that the sign "$\leq$" in given estimate can be changed for "$=$".

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源