论文标题

用户意图推断网络搜索和对话代理

User Intent Inference for Web Search and Conversational Agents

论文作者

Ahmadvand, Ali

论文摘要

用户意图理解是设计对话代理和搜索引擎的关键步骤。检测或推断用户意图是具有挑战性的,因为用户的话语或查询可以简短,模棱两可且依赖上下文。为了应对这些研究挑战,我的论文工作着重于:1)对话代理的话语主题和意图分类2)查询意图挖掘和网络搜索引擎的分类,重点介绍电子商务领域。为了解决第一个主题,我提出了小说模型,以整合实体信息和对话信息线索,以预测用户话语的主题和意图。对于第二个研究主题,我计划将网络搜索意图中现有的最新方法扩展到电子商务领域,通过:1)开发一个联合学习模型,以预测搜索查询的意图和与之相关的产品类别,2)发现新的隐藏用户的意图。所有模型将在主要的电子商务网站搜索引擎可用的实际查询中进行评估。可以利用这些研究的结果来提高各种任务的执行,例如自然语言理解,查询范围范围,查询建议和排名,从而带来丰富的用户体验。

User intent understanding is a crucial step in designing both conversational agents and search engines. Detecting or inferring user intent is challenging, since the user utterances or queries can be short, ambiguous, and contextually dependent. To address these research challenges, my thesis work focuses on: 1) Utterance topic and intent classification for conversational agents 2) Query intent mining and classification for Web search engines, focusing on the e-commerce domain. To address the first topic, I proposed novel models to incorporate entity information and conversation-context clues to predict both topic and intent of the user's utterances. For the second research topic, I plan to extend the existing state of the art methods in Web search intent prediction to the e-commerce domain, via: 1) Developing a joint learning model to predict search queries' intents and the product categories associated with them, 2) Discovering new hidden users' intents. All the models will be evaluated on the real queries available from a major e-commerce site search engine. The results from these studies can be leveraged to improve performance of various tasks such as natural language understanding, query scoping, query suggestion, and ranking, resulting in an enriched user experience.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源