论文标题

全息伪熵

Holographic Pseudo Entropy

论文作者

Nakata, Yoshifumi, Takayanagi, Tadashi, Taki, Yusuke, Tamaoka, Kotaro, Wei, Zixia

论文摘要

我们引入了一个称为伪熵的数量,作为通过序列后的纠缠熵的概括。在ADS/CFT对应关系中,该数量是渐近的欧几里得空间中最小面积表面的区域,该区域是渐近的广告。我们研究了量子系统中其基本属性和分类。在特定的示例中,我们提供了该新数量的量子信息理论含义,作为执行后选择后平均数量的铃铛对。我们还介绍了随机状态的伪熵的性质。然后,我们在存在二维无质量标量CFT和二维全息CFT的情况下,在存在本地操作员激发的情况下计算伪熵。我们发现CFT中的一般属性,当本地操作员靠近子系统的边界时,伪熵会大大降低。我们还计算了用于Janus溶液的全息伪熵,这是对二维CFT的完全边缘扰动的双重扰动,并在双CFT中找到了与扰动计算的一致性。我们显示了全息状态的线性特性,其中全息伪熵与区域操作员的弱价值相吻合。最后,我们提出了伪熵的混合状态概括,并给出其重力二。

We introduce a quantity, called pseudo entropy, as a generalization of entanglement entropy via post-selection. In the AdS/CFT correspondence, this quantity is dual to areas of minimal area surfaces in time-dependent Euclidean spaces which are asymptotically AdS. We study its basic properties and classifications in qubit systems. In specific examples, we provide a quantum information theoretic meaning of this new quantity as an averaged number of Bell pairs when the post-selection is performed. We also present properties of the pseudo entropy for random states. We then calculate the pseudo entropy in the presence of local operator excitations for both the two dimensional free massless scalar CFT and two dimensional holographic CFTs. We find a general property in CFTs that the pseudo entropy is highly reduced when the local operators get closer to the boundary of the subsystem. We also compute the holographic pseudo entropy for a Janus solution, dual to an exactly marginal perturbation of a two dimensional CFT and find its agreement with a perturbative calculation in the dual CFT. We show the linearity property holds for holographic states, where the holographic pseudo entropy coincides with a weak value of the area operator. Finally, we propose a mixed state generalization of pseudo entropy and give its gravity dual.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源