论文标题
一个实用的索引结构,支持轨迹之间的Fréchet接近查询
A Practical Index Structure Supporting Fréchet Proximity Queries Among Trajectories
论文作者
论文摘要
我们提出了一种可扩展的方法,在计算昂贵的指标下,范围和$ k $最近的邻居查询,例如轨迹数据上的连续fréchet距离。基于公制索引的聚类,我们获得了一个动态树结构,其大小在轨迹数量中是线性的,无论轨迹的单个尺寸或空间维度如何,它允许一个人利用低的“内在维度”的“内在维度”,以进行有效的搜索空间修剪。 由于距离计算很昂贵,因此通用度量索引方法是不切实际的。我们提出了(i)改进已知的上和下边界计算,(ii)构建集群树而无需任何或极少的距离调用,以及(iii)使用范围进行公制修剪的范围,减少间隔订单以及报告最终结果的随机旋转。 我们通过对各种综合和现实世界数据集进行了广泛的实验来分析方法的效率和有效性。结果表明,对于确切查询的最先进方法的改进,对于可能返回近似结果的查询,甚至可以进一步加速。令人惊讶的是,在没有任何距离计算的情况下,回答了实际数据集中的大多数最接近的邻居查询。
We present a scalable approach for range and $k$ nearest neighbor queries under computationally expensive metrics, like the continuous Fréchet distance on trajectory data. Based on clustering for metric indexes, we obtain a dynamic tree structure whose size is linear in the number of trajectories, regardless of the trajectory's individual sizes or the spatial dimension, which allows one to exploit low `intrinsic dimensionality' of data sets for effective search space pruning. Since the distance computation is expensive, generic metric indexing methods are rendered impractical. We present strategies that (i) improve on known upper and lower bound computations, (ii) build cluster trees without any or very few distance calls, and (iii) search using bounds for metric pruning, interval orderings for reduction, and randomized pivoting for reporting the final results. We analyze the efficiency and effectiveness of our methods with extensive experiments on diverse synthetic and real-world data sets. The results show improvement over state-of-the-art methods for exact queries, and even further speed-ups are achieved for queries that may return approximate results. Surprisingly, the majority of exact nearest-neighbor queries on real data sets are answered without any distance computations.