论文标题

适合强烈拓扑陀螺仪的合适套件

Suitable sets for strongly topological gyrogroups

论文作者

Lin, Fucai, Shi, Tingting, Bao, Meng

论文摘要

如果$ g $产生$ g $的密集subgyRogroup,则据说具有身份$ 0 $的拓扑gyrogroup $ g $的离散子集$ s $被认为是{\ it合适的set},$ g $和$ s \ s \ cup \ {0 \ {0 \ {0 \} $在$ g $中关闭。在本文中,证明每个可计数的Hausdorff拓扑结构都有合适的集合。此外,已经表明,每个可分开的可分离性强拓扑gyrogroup都有合适的集合。

A discrete subset $S$ of a topological gyrogroup $G$ with the identity $0$ is said to be a {\it suitable set} for $G$ if it generates a dense subgyrogroup of $G$ and $S\cup \{0\}$ is closed in $G$. In this paper, it was proved that each countable Hausdorff topological gyrogroup has a suitable set; moreover, it is shown that each separable metrizable strongly topological gyrogroup has a suitable set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源