论文标题

朦胧:使用可穿戴传感器的个人空气污染吸入剂量估计系统的设计和分析

HazeDose: Design and Analysis of a Personal Air Pollution Inhaled Dose Estimation System using Wearable Sensors

论文作者

Hu, Ke, Rahman, Ashfaqur, Gharakheili, Hassan Habibi, Sivaraman, Vijay

论文摘要

如今,空气污染已成为发展中国家和发达国家中最大的世界问题之一。帮助个人了解其空气污染的暴露和健康风险,传统的方式是利用静态监测站的数据,并估计政府机构在大面积地区的空气污染质量。来自这种传感系统的数据非常稀疏,无法反映出真正的个人曝光。近年来,几个研究小组开发了参与式空气污染传感系统,这些系统使用可穿戴或便携式单元,以及智能手机来群体源泉城市空气污染数据。这些系统表明,与政府操作的固定监测系统相比,空间粒度的改善显着改善。在本文中,我们将范式扩展到危险系统,该系统可以个性化个人的空气污染暴露。具体而言,我们将从空气污染估计系统获得的污染浓度与个人在体内活动监测器中的活性数据相结合,以估计个人吸入剂量的空气污染剂量。用户可以通过移动应用程序可视化其个性化的空气污染暴露信息。我们表明,诸如步行,骑自行车或驾驶之类的不同活动会影响其剂量,并且通勤模式造成了个人日常空气污染剂量的很大比例。此外,我们提出了一种剂量最小化算法,试验结果表明,可以减少骑自行车的每日暴露的14.1%,而使用驾驶员可能比平常少25.9%的替代路线吸气25.9%。还引入了一种启发式算法,以平衡执行时间和替代路线方案的剂量。结果表明,当执行时间几乎是原始剂量的第七十分之1时,可以减少多达20.3%的剂量。

Nowadays air pollution becomes one of the biggest world issues in both developing and developed countries. Helping individuals understand their air pollution exposure and health risks, the traditional way is to utilize data from static monitoring stations and estimate air pollution qualities in a large area by government agencies. Data from such sensing system is very sparse and cannot reflect real personal exposure. In recent years, several research groups have developed participatory air pollution sensing systems which use wearable or portable units coupled with smartphones to crowd-source urban air pollution data. These systems have shown remarkable improvement in spatial granularity over government-operated fixed monitoring systems. In this paper, we extend the paradigm to HazeDose system, which can personalize the individuals' air pollution exposure. Specifically, we combine the pollution concentrations obtained from an air pollution estimation system with the activity data from the individual's on-body activity monitors to estimate the personal inhalation dosage of air pollution. Users can visualize their personalized air pollution exposure information via a mobile application. We show that different activities, such as walking, cycling, or driving, impact their dosage, and commuting patterns contribute to a significant proportion of an individual's daily air pollution dosage. Moreover, we propose a dosage minimization algorithm, with the trial results showing that up to 14.1% of a biker's daily exposure can be reduced while using alternative routes the driver can inhale 25.9% less than usual. One heuristic algorithm is also introduced to balance the execution time and dosage reduction for alternative routes scenarios. The results show that up to 20.3% dosage reduction can be achieved when the execution time is almost one seventieth of the original one.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源