论文标题

投资组合优化的深度学习

Deep Learning for Portfolio Optimization

论文作者

Zhang, Zihao, Zohren, Stefan, Roberts, Stephen

论文摘要

我们采用深度学习模型直接优化投资组合夏普比率。我们提出的框架规避了预测预期收益的要求,并允许我们通过更新模型参数直接优化投资组合权重。我们没有选择个人资产,而是贸易交易所交易的市场指数基金(ETF)形成投资组合。不同资产类别的指数显示出牢固的相关性,并大大降低了可用资产的范围。我们将我们的方法与广泛的算法进行比较,结果表明,我们的模型在2011年至2020年4月底的测试期间获得了最佳性能,包括包括2020年第一季度的金融不稳定性。包括敏感性分析以了解输入功能的相关性,我们在不同的成本率和不同的风险级别下通过波动级别进一步研究了我们的方法的性能。

We adopt deep learning models to directly optimise the portfolio Sharpe ratio. The framework we present circumvents the requirements for forecasting expected returns and allows us to directly optimise portfolio weights by updating model parameters. Instead of selecting individual assets, we trade Exchange-Traded Funds (ETFs) of market indices to form a portfolio. Indices of different asset classes show robust correlations and trading them substantially reduces the spectrum of available assets to choose from. We compare our method with a wide range of algorithms with results showing that our model obtains the best performance over the testing period, from 2011 to the end of April 2020, including the financial instabilities of the first quarter of 2020. A sensitivity analysis is included to understand the relevance of input features and we further study the performance of our approach under different cost rates and different risk levels via volatility scaling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源