论文标题

用于覆盖,包装和最大加权匹配的分布式算法

Distributed algorithms for covering, packing and maximum weighted matching

论文作者

Koufogiannakis, Christos, Young, Neal E.

论文摘要

本文提供了多结合式的,分布式的D-Approximation算法,用于涵盖子模成本和单调覆盖约束的问题(覆盖下)。近似值d是任何约束中的最大变量数。特殊情况包括涵盖混合整数线性程序(CMIP)和加权顶点盖(d = 2)。通过二元性,本文还提供了分数包装线性程序(其中d是发生任何变量的最大约束数量)的poly-logarithmic-round,分布式的D-AppRoximation算法,对于最大加权C型的最大约束数量(其中D是Hypereded of Hypereded of Hypereded;对于图形d = 2 = 2 = 2)。该论文还提供了CMIP的平行(RNC)2-辅助算法,每个约束和加权顶点盖有两个变量。算法是随机的。所有近似值比完全匹配了可比集中算法的近似值。

This paper gives poly-logarithmic-round, distributed D-approximation algorithms for covering problems with submodular cost and monotone covering constraints (Submodular-cost Covering). The approximation ratio D is the maximum number of variables in any constraint. Special cases include Covering Mixed Integer Linear Programs (CMIP), and Weighted Vertex Cover (with D=2). Via duality, the paper also gives poly-logarithmic-round, distributed D-approximation algorithms for Fractional Packing linear programs (where D is the maximum number of constraints in which any variable occurs), and for Max Weighted c-Matching in hypergraphs (where D is the maximum size of any of the hyperedges; for graphs D=2). The paper also gives parallel (RNC) 2-approximation algorithms for CMIP with two variables per constraint and Weighted Vertex Cover. The algorithms are randomized. All of the approximation ratios exactly match those of comparable centralized algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源