论文标题

部分可观测时空混沌系统的无模型预测

An arbitrary high-order Spectral Difference method for the induction equation

论文作者

Veiga, Maria Han, Velasco-Romero, David A, Wenger, Quentin, Teyssier, Romain

论文摘要

我们在本文中研究了具有runge-kutta(RK)时间整合的高阶不连续盖尔金(DG)方法的三种变体,用于感应方程,分析了它们保留磁场无差异约束的能力。为了量化差异误差,我们根据表面项,测量全局差异误差和音量项,测量局部差异错误,使用标准。这使我们基于对频谱差异(SD)方法[1]的修改[2]的修改[2],为多个空间维度的感应方程设计了一种新的,任意的高阶数值方案。 It appears as a natural extension of the Constrained Transport (CT) method. We show that it preserves $\nabla\cdot\vec{B}=0$ exactly by construction, both in a local and a global sense.我们将新方法与3个RKDG变体进行了比较,并表明我们新的SD-ADER方案的磁能演变和解决方案图在质量上与带有散射清洁的RKDG变体相似,但不需要附加方程式和额外的变量来控制差异错误。 [1] Liu Y., Vinokur M., Wang Z.J. (2006) Discontinuous Spectral Difference Method for Conservation Laws on Unstructured Grids. In: Groth C., Zingg D.W. (eds) Computational Fluid Dynamics 2004. Springer, Berlin, Heidelberg [2] Dumbser M.,Castro M.,ParésC。,Toro E.F(2009)非保守双曲线系统的非结构化网格方案:对地球物理流的应用。 In: Computers & Fluids, Volume 38, Issue 9

We study in this paper three variants of the high-order Discontinuous Galerkin (DG) method with Runge-Kutta (RK) time integration for the induction equation, analysing their ability to preserve the divergence free constraint of the magnetic field. To quantify divergence errors, we use a norm based on both a surface term, measuring global divergence errors, and a volume term, measuring local divergence errors. This leads us to design a new, arbitrary high-order numerical scheme for the induction equation in multiple space dimensions, based on a modification of the Spectral Difference (SD) method [1] with ADER time integration [2]. It appears as a natural extension of the Constrained Transport (CT) method. We show that it preserves $\nabla\cdot\vec{B}=0$ exactly by construction, both in a local and a global sense. We compare our new method to the 3 RKDG variants and show that the magnetic energy evolution and the solution maps of our new SD-ADER scheme are qualitatively similar to the RKDG variant with divergence cleaning, but without the need for an additional equation and an extra variable to control the divergence errors. [1] Liu Y., Vinokur M., Wang Z.J. (2006) Discontinuous Spectral Difference Method for Conservation Laws on Unstructured Grids. In: Groth C., Zingg D.W. (eds) Computational Fluid Dynamics 2004. Springer, Berlin, Heidelberg [2] Dumbser M., Castro M., Parés C., Toro E.F (2009) ADER schemes on unstructured meshes for nonconservative hyperbolic systems: Applications to geophysical flows. In: Computers & Fluids, Volume 38, Issue 9

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源