论文标题

超符号链式方程

The Superconformal Xing Equation

论文作者

Burić, Ilija, Schomerus, Volker, Sobko, Evgeny

论文摘要

交叉对称性提供了一种强大的工具,可以访问共形和超符合场理论的非扰动动力学。在这里,我们开发了数学形式主义,该数学形式主义允许在具有I型超级符号对称性的理论中为任意的四点函数构建交叉方程,包括$ d = 4 $ dimensions中的所有超符合字段理论。我们的进步依赖于张量结构的超组理论结构,该结构概括了\ cite {buric:2019dfk}的方法。当与我们最近的相关超级块结构结合使用时,我们能够在所有4维超符合性场理论中的任意长多重函数的四点函数中推导交叉对称约束。

Crossing symmetry provides a powerful tool to access the non-perturbative dynamics of conformal and superconformal field theories. Here we develop the mathematical formalism that allows to construct the crossing equations for arbitrary four-point functions in theories with superconformal symmetry of type I, including all superconformal field theories in $d=4$ dimensions. Our advance relies on a supergroup theoretic construction of tensor structures that generalizes an approach which was put forward in \cite{Buric:2019dfk} for bosonic theories. When combined with our recent construction of the relevant superblocks, we are able to derive the crossing symmetry constraint in particular for four-point functions of arbitrary long multiplets in all 4-dimensional superconformal field theories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源