论文标题
Banach空间中非自主演化方程的Stepanov ergodic扰动
Stepanov ergodic perturbations for nonautonomous evolution equations in Banach spaces
论文作者
论文摘要
在这项工作中,我们证明了$μ$ -PSEUDO的存在和唯一性几乎是某些半连线的非自主性进化方程的自动形态解决方案:$ u'(t)= a(t)= a(t)u(t)u(t)u(t)+f(t)+f(t)+f(t,t,u(t)),\; t \ in \ Mathbb {r} $其中$(a(t))_ {t \ in \ Mathbb {r}} $是一个在Banach Space $ X $上作用于Banach Space $ X $的封闭式封闭式的运算符的家族,该家族产生了一个强烈的连续进化家庭,该家族具有强烈的进化家庭,该家族对$ \ m m iathbbbbbb} $ \ mathbb {r} $ \ r} $ \ mathbb {r r}。非线性术语$ f:\ mathbb {r} \ times x \ longrightArrow x $仅是$μ$ -PSEUDO几乎是$ t $中的Stepanov Sense中的自动形态,而Lipshitzian对于第二个变量。为了进行说明,为$ \ mathbb {r} $上的一类非自治反应扩散方程提供了一个应用程序。
In this work, we prove the existence and uniqueness of $μ$-pseudo almost automorphic solutions for some class of semilinear nonautonomous evolution equations of the form: $ u'(t)=A(t)u(t)+f(t,u(t)),\; t\in\mathbb{R} $ where $ (A(t))_{t\in \mathbb{R}} $ is a family of closed densely defined operators acting on a Banach space $X$ that generates a strongly continuous evolution family which has an exponential dichotomy on $\mathbb{R}$. The nonlinear term $f: \mathbb{R} \times X \longrightarrow X$ is just $μ$-pseudo almost automorphic in Stepanov sense in $t$ and Lipshitzian with respect to the second variable. For illustration, an application is provided for a class of nonautonomous reaction diffusion equations on $\mathbb{R}$.