论文标题
对角矩阵的总和产物估计值
Sum-product estimates for diagonal matrices
论文作者
论文摘要
给定的$ d \在\ mathbb {n} $中,我们建立了$ \ mathbb {r}^d $的有限的,非空的子集的总和估计。这等同于对角矩阵集的总和结果。特别是,让$ a $是具有真实条目的有限的,非空的$ d \ times d $对角矩阵。然后,对于所有$δ_1<1/3 + 5/5277 $,我们有\ [| a + a | + | a \ cdot a | \ gg_ {d} | a |^{1 +δ_{1}/d}。 \]在这种情况下,上述估计值加强了张的结果。
Given $d \in \mathbb{N}$, we establish sum-product estimates for finite, non-empty subsets of $\mathbb{R}^d$. This is equivalent to a sum-product result for sets of diagonal matrices. In particular, let $A$ be a finite, non-empty set of $d \times d$ diagonal matrices with real entries. Then for all $δ_1 < 1/3 + 5/5277$, we have \[ |A+A| + |A\cdot A| \gg_{d} |A|^{1 + δ_{1}/d}. \] In this setting, the above estimate quantitatively strengthens a result of Chang.