论文标题

实验空气中基于相关的阵列成像的加权数据空间

Weighted Data Spaces for Correlation-Based Array Imaging in Experimental Aeroacoustics

论文作者

Raumer, Hans-Georg, Spehr, Carsten, Hohage, Thorsten, Ernst, Daniel

论文摘要

本文讨论了基于频域中相关测量值的空气成像方法。该领域中的标准方法假定估计的相关矩阵与加法白噪声叠加。在本文中,我们提出了一个数学模型,用于涵盖任意相关噪声的测量过程。相关数据的协方差矩阵是根据第四阶矩给出的。本文的目的是探讨成像方法中有关测量数据的其他信息的使用。为此,引入了一类加权数据空间,每个数据空间自然定义了具有相应点扩散函数的关联的波束成型方法。这种通用的光束形成器类别包含许多众所周知的方法,例如传统的光束形成,(稳健)自适应光束形成或光束形成。本文研究了取决于噪声(CO)方差的特定权重。在理论分析中,我们证明,由完整的噪声协方差矩阵加权的波束形式在所描述类中的所有波束形式之间的差异很小。 (CO)方差加权方法在合成和实验数据上的应用表明,结果的分辨率得到改善,噪声效应降低。

This article discusses aeroacoustic imaging methods based on correlation measurements in the frequency domain. Standard methods in this field assume that the estimated correlation matrix is superimposed with additive white noise. In this paper we present a mathematical model for the measurement process covering arbitrarily correlated noise. The covariance matrix of correlation data is given in terms of fourth order moments. The aim of this paper is to explore the use of such additional information on the measurement data in imaging methods. For this purpose a class of weighted data spaces is introduced, where each data space naturally defines an associated beamforming method with a corresponding point spread function. This generic class of beamformers contains many well-known methods such as Conventional Beamforming, (Robust) Adaptive Beamforming or beamforming with shading. This article examines in particular weightings that depend on the noise (co)variances. In a theoretical analysis we prove that the beamformer, weighted by the full noise covariance matrix, has minimal variance among all beamformers from the described class. Application of the (co)variance weighted methods on synthetic and experimental data show that the resolution of the results is improved and noise effects are reduced.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源