论文标题

在实际二次数字字段中具有主要限制的双苯胺近似值

Diophantine Approximation with Prime Restriction in Real Quadratic Number Fields

论文作者

Baier, Stephan, Mazumder, Dwaipayan

论文摘要

$αp$ modulo One的分布,其中$ p $在理性的素数上运行,而$α$是固定的非理性真实,引起了很多关注。很自然地询问哪些指数$ν> 0 $一个人可以建立满足$ ||αp|| \ le p^{ - ν} $的无限$ p $。这方面的最新记录是KaisaMatomäki的地标结果$ν= 1/3- \ Varepsilon $,它提出了当前已知技术的限制。最近,格林·哈曼(Glyn Harman),以及共同的马克·蒂莫(Marc Technau)和名称的作者,在虚构的二次领域中调查了同样的问题。 Glyn Harman在$ \ Mathbb {Q} $的上下文中获得了其结果的$ \ Mathbb {q}(i)$的模拟,该$ \ m athbb {q} $产生了$ν= 7/22 $的指数。 Marc Technau和名称的作者对鲍勃·沃恩(Bob Vaughan)的结果$ν= 1/4- \ varepsilon $的类似物,用于所有想象中的二次数字数字1。在本文中,我们建立了在某些Diophantine限制下进行实际Quadratic 1的最后一个Quadratic Fard的类似物。该设置涉及整数环中无限单元组的额外并发症。此外,尽管基本的筛子方法保持不变(我们使用了Harman的筛子的理想版本),但由于它成为真正的二维,因此问题会带来不同的风味。我们最终将其简化为一个计数问题,有趣的是,这与二次一致性有关。为了近似它们,我们根据二元二元形式的理论使用克里斯托弗·休莉(Christopher Hooley)的方法。

The distribution of $αp$ modulo one, where $p$ runs over the rational primes and $α$ is a fixed irrational real, has received a lot of attention. It is natural to ask for which exponents $ν>0$ one can establish the infinitude of primes $p$ satisfying $||αp||\le p^{-ν}$. The latest record in this regard is Kaisa Matomäki's landmark result $ν=1/3-\varepsilon$ which presents the limit of currently known technology. Recently, Glyn Harman, and, jointly, Marc Technau and the first-named author, investigated the same problem in the context of imaginary quadratic fields. Glyn Harman obtained an analog for $\mathbb{Q}(i)$ of his result in the context of $\mathbb{Q}$, which yields an exponent of $ν=7/22$. Marc Technau and the first-named author produced an analogue of Bob Vaughan's result $ν=1/4-\varepsilon$ for all imaginary quadratic number fields of class number 1. In the present article, we establish an analog of the last-mentioned result for real quadratic fields of class number 1 under a certain Diophantine restriction. This setting involves the additional complication of an infinite group of units in the ring of integers. Moreover, although the basic sieve approach remains the same (we use an ideal version of Harman's sieve), the problem takes a different flavor since it becomes truly 2-dimensional. We reduce it eventually to a counting problem which is, interestingly, related to roots of quadratic congruences. To approximate them, we use an approach by Christopher Hooley based on the theory of binary quadratic forms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源