论文标题

低精度算术的量子电路模拟的极限

The limits of quantum circuit simulation with low precision arithmetic

论文作者

Betelu, Santiago I.

论文摘要

这是对Schrodinger的配方和低精度算术的量子电路模拟极限的研究。目的是估计可以将多少存储器保存在涉及随机,最大纠缠量子状态的模拟中。为每个量子振幅定义了$ b $位的算术极性表示,并开发了一个归一化过程来最大程度地减少舍入错误。然后开发了一个模型来量化$ Q $ QUBITS和$ G $门的电路上的累积错误。根据电路运行的方式,该模型会为可以模拟的最大有效门数的明确表达式在围绕误差之前占主导地位。结果用随机电路和量子傅立叶变换说明。

This is an investigation of the limits of quantum circuit simulation with Schrodinger's formulation and low precision arithmetic. The goal is to estimate how much memory can be saved in simulations that involve random, maximally entangled quantum states. An arithmetic polar representation of $B$ bits is defined for each quantum amplitude and a normalization procedure is developed to minimize rounding errors. Then a model is developed to quantify the cumulative errors on a circuit of $Q$ qubits and $G$ gates. Depending on which regime the circuit operates, the model yields explicit expressions for the maximum number of effective gates that can be simulated before rounding errors dominate the computation. The results are illustrated with random circuits and the quantum Fourier transform.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源