论文标题
主题级脑网络估计和推理的空间模板独立组件分析模型
A spatial template independent component analysis model for subject-level brain network estimation and inference
论文作者
论文摘要
独立的组件分析通常应用于功能磁共振成像(fMRI)数据,以提取代表功能性脑网络的独立组件(ICS)。尽管ICA产生可靠的组级估计值,但单受试者ICA通常会产生嘈杂的结果。模板ICA(TICA)是使用经验人群先验的分层ICA模型,以产生可靠的主题级IC估计。但是,该和其他分层ICA模型不切实际地假设主题效应在空间上是独立的。在这里,我们提出了空间模板ICA(Stica),该模板将空间工艺先验纳入TICA。这会提高IC和主题效应的估计效率。此外,联合后验分布可用于使用偏移设定的方法来识别参与区域。通过利用空间依赖性并避免进行大规模的多重比较,Stica具有很高的能力来检测真正的影响。我们得出有效的期望最大化算法,以获得潜在场的模型参数和后矩的最大似然估计。基于对人类Connectome项目的模拟数据和fMRI数据的分析,我们发现Stica产生的估计值比基准方法更准确,更可靠,并确定了更大,更可靠的参与领域。该算法是相当可观的,在我们的功能磁共振成像分析中,在7小时内达到了收敛。
Independent component analysis is commonly applied to functional magnetic resonance imaging (fMRI) data to extract independent components (ICs) representing functional brain networks. While ICA produces reliable group-level estimates, single-subject ICA often produces noisy results. Template ICA (tICA) is a hierarchical ICA model using empirical population priors to produce reliable subject-level IC estimates. However, this and other hierarchical ICA models assume unrealistically that subject effects are spatially independent. Here, we propose spatial template ICA (stICA), which incorporates spatial process priors into tICA. This results in greater estimation efficiency of ICs and subject effects. Additionally, the joint posterior distribution can be used to identify engaged areas using an excursions set approach. By leveraging spatial dependencies and avoiding massive multiple comparisons, stICA has high power to detect true effects. We derive an efficient expectation-maximization algorithm to obtain maximum likelihood estimates of the model parameters and posterior moments of the latent fields. Based on analysis of simulated data and fMRI data from the Human Connectome Project, we find that stICA produces estimates that are more accurate and reliable than benchmark approaches, and identifies larger and more reliable areas of engagement. The algorithm is quite tractable, achieving convergence within 7 hours in our fMRI analysis.