论文标题
深度学习辅助数据检查射电射线天文学
Deep Learning Assisted Data Inspection for Radio Astronomy
论文作者
论文摘要
现代射电望远镜结合了数千个接收器,长距离网络,大规模计算硬件和复杂的软件。由于这种复杂性,失败发生频率相对频繁。在这项工作中,我们建议对无监督的深度学习进行新颖的使用,以诊断现代射电望远镜的系统健康。该模型是卷积变分自动编码器(VAE),它可以将高维时数据投影到低维规范空间。使用此投影,望远镜操作员能够视觉检查故障,从而维持系统健康。我们在对HERA的模拟数据中进行了定量的VAE培训和评估了VAE的性能。此外,我们对对实际Lofar数据进行训练和测试的模型进行了定性评估。通过在投影合成的数据上使用幼稚的SVM分类器,我们表明投影的维度与给定频谱图中的复合特征的数量之间存在权衡。 VAE和SVM组合得分在65%至90%之间,具体取决于给定输入中的特征数量。最后,我们显示了集成了评估模型的原型系统 - 健康诊断网络框架。该系统目前正在Astron天文台进行测试。
Modern radio telescopes combine thousands of receivers, long-distance networks, large-scale compute hardware, and intricate software. Due to this complexity, failures occur relatively frequently. In this work we propose novel use of unsupervised deep learning to diagnose system health for modern radio telescopes. The model is a convolutional Variational Autoencoder (VAE) that enables the projection of the high dimensional time-frequency data to a low-dimensional prescriptive space. Using this projection, telescope operators are able to visually inspect failures thereby maintaining system health. We have trained and evaluated the performance of the VAE quantitatively in controlled experiments on simulated data from HERA. Moreover, we present a qualitative assessment of the the model trained and tested on real LOFAR data. Through the use of a naive SVM classifier on the projected synthesised data, we show that there is a trade-off between the dimensionality of the projection and the number of compounded features in a given spectrogram. The VAE and SVM combination scores between 65% and 90% accuracy depending on the number of features in a given input. Finally, we show the prototype system-health-diagnostic web framework that integrates the evaluated model. The system is currently undergoing testing at the ASTRON observatory.