论文标题

带有时间的Navier-Stokes方程式准周期外力:准周期解决方案的存在和稳定性

The Navier-Stokes equation with time quasi-periodic external force: existence and stability of quasi-periodic solutions

论文作者

Montalto, Riccardo

论文摘要

我们证明了对于不可压缩的Navier-Stokes方程式的小幅度,时间 - 周期性解决方案(不变的tori),$ d $ d $ d $二维的torus $ \ t^d $,带有时间外部力量的小,准周期性。我们还表明,它们在$ H^s $中是轨道和渐近稳定的(对于$ S $足够大)。更确切地说,对于任何靠近不变圆环的初始基准,都存在一个独特的全局时间解决方案,该解决方案始终保持靠近不变的圆环。此外,该解决方案以$ t \ to + \ infty $渐近地收敛到不变的圆环,并以任何任意$α\ in(0,1)$的融合率$ O(e^{ - αt})$指数率。

We prove the existence of small amplitude, time-quasi-periodic solutions (invariant tori) for the incompressible Navier-Stokes equation on the $d$-dimensional torus $\T^d$, with a small, quasi-periodic in time external force. We also show that they are orbitally and asymptotically stable in $H^s$ (for $s$ large enough). More precisely, for any initial datum which is close to the invariant torus, there exists a unique global in time solution which stays close to the invariant torus for all times. Moreover, the solution converges asymptotically to the invariant torus for $t \to + \infty$, with an exponential rate of convergence $O( e^{- αt })$ for any arbitrary $α\in (0, 1)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源