论文标题

基于哈密顿的材料财产预测的图形神经网络

Graph Neural Network for Hamiltonian-Based Material Property Prediction

论文作者

Bai, Hexin, Chu, Peng, Tsai, Jeng-Yuan, Wilson, Nathan, Qian, Xiaofeng, Yan, Qimin, Ling, Haibin

论文摘要

用于应用的下一代电子设备的开发要求发现具有新型电子,磁性和拓扑特性的量子材料。传统的电子结构方法需要昂贵的计算时间和存储器消耗,因此需要越来越重要的预测模型。代表任何材料中原子轨道之间的相互作用,材料哈密顿量提供了控制无机化合物中结构质体相关性的所有基本要素。因此,通过开发机器学习方法对材料的有效学习,提供了一种变革性的方法来加速量子材料的发现和设计。通过这种动机,我们提出并比较了能够​​预测无机材料的带隙的几个不同的图形卷积网络。开发模型以结合两个不同的特征:每个轨道本身的信息以及彼此之间的相互作用。每个轨道的信息包括名称,相对于超级单元中心和原子数的相对坐标,而轨道之间的相互作用则由哈密顿矩阵表示。结果表明,我们的模型可以通过交叉验证获得有希望的预测准确性。

Development of next-generation electronic devices for applications call for the discovery of quantum materials hosting novel electronic, magnetic, and topological properties. Traditional electronic structure methods require expensive computation time and memory consumption, thus a fast and accurate prediction model is desired with increasing importance. Representing the interactions among atomic orbitals in any material, a material Hamiltonian provides all the essential elements that control the structure-property correlations in inorganic compounds. Effective learning of material Hamiltonian by developing machine learning methodologies therefore offers a transformative approach to accelerate the discovery and design of quantum materials. With this motivation, we present and compare several different graph convolution networks that are able to predict the band gap for inorganic materials. The models are developed to incorporate two different features: the information of each orbital itself and the interaction between each other. The information of each orbital includes the name, relative coordinates with respect to the center of super cell and the atom number, while the interaction between orbitals are represented by the Hamiltonian matrix. The results show that our model can get a promising prediction accuracy with cross-validation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源