论文标题
旋转的自磨碎的玻色网与地壳凝结:脉冲星故障的最小模型
Rotating self-gravitating Bose-Einstein condensates with a crust: a minimal model for pulsar glitches
论文作者
论文摘要
我们通过在三维(3D)GROSS-PITAEVSKII-POISSON方程(GPPE)中引入固体腐蚀潜力来开发\ textit {pulsar Glitches}的最小模型,我们较早地使用它来研究重力绑定的Bose-Instein Coldentes(Becs)(BECS)(becs),即bosonic sters。在没有地壳电位的情况下,我们表明,如果我们旋转这样的骨气恒星,它是由涡流螺纹的。然后,我们通过广泛的直接数值模拟(DNSS)表明,这些涡旋与地壳潜在产量的相互作用(a)粘性滑移动力学和(b)动态故障。我们证明,如果将足够的动量转移到骨气恒星的外壳中,则将涡流从恒星中排出,而外壳的角动量$ j_c $展示了可以自然解释为故障的特征。从$ J_C $的时间序列开始,我们计算事件大小,事件持续时间和等待时间的累积概率分布功能(CPDFS)。我们表明,这些CPDF具有自组织的临界(SOC)的签名,这些签名在脉冲星故障的观察结果中已经看到。
We develop a minimal model for \textit{pulsar glitches} by introducing a solid-crust potential in the three-dimensional (3D) Gross-Pitaevskii-Poisson equation (GPPE), which we have used earlier to study gravitationally bound Bose-Einstein Condensates (BECs), i.e., bosonic stars. In the absence of the crust potential, we show that, if we rotate such a bosonic star, it is threaded by vortices. We then show, via extensive direct numerical simulations (DNSs), that the interaction of these vortices with the crust potential yields (a) stick-slip dynamics and (b) dynamical glitches. We demonstrate that, if enough momentum is transferred to the crust from the bosonic star, then the vortices are expelled from the star and the crust's angular momentum $J_c$ exhibits features that can be interpreted naturally as glitches. From the time series of $J_c$, we compute the cumulative probability distribution functions (CPDFs) of event sizes, event durations, and waiting times. We show that these CPDFs have signatures of self-organized criticality (SOC), which have been seen in observations on pulsar glitches.