论文标题
基于移动应用使用的通用用户嵌入
General-Purpose User Embeddings based on Mobile App Usage
论文作者
论文摘要
在本文中,我们报告了基于移动应用程序使用情况的腾讯的最新实践,以用于用户建模。移动应用程序使用的用户行为(包括保留,安装和卸载)可以是用户长期和短期利益的良好指标。例如,如果用户最近安装Snapseed,她可能对拍照产生越来越兴趣。此类信息对于众多下游应用程序(包括广告,建议等)很有价值。传统上,移动应用程序使用的用户建模在很大程度上依赖于手工制作的功能工程,这需要用于不同下游应用程序的繁重的人工工作,并且可以是次优的没有领域的专家。但是,基于移动应用程序使用的自动用户建模面临着独特的挑战,包括(1)保留,安装和卸载是异质的,但需要集体建模,(2)用户行为随着时间的推移不均匀,(3)许多长尾应用程序都遭受了严重的宽松损失。在本文中,我们提出了一个量身定制的自动编码器耦合变压器网络(AETN),通过该网络我们克服了这些挑战,并实现了减少手动努力并提高性能的目标。我们已经在Tencent部署了该模型,并且来自下游应用程序多个域的在线/离线实验都证明了输出用户嵌入的有效性。
In this paper, we report our recent practice at Tencent for user modeling based on mobile app usage. User behaviors on mobile app usage, including retention, installation, and uninstallation, can be a good indicator for both long-term and short-term interests of users. For example, if a user installs Snapseed recently, she might have a growing interest in photographing. Such information is valuable for numerous downstream applications, including advertising, recommendations, etc. Traditionally, user modeling from mobile app usage heavily relies on handcrafted feature engineering, which requires onerous human work for different downstream applications, and could be sub-optimal without domain experts. However, automatic user modeling based on mobile app usage faces unique challenges, including (1) retention, installation, and uninstallation are heterogeneous but need to be modeled collectively, (2) user behaviors are distributed unevenly over time, and (3) many long-tailed apps suffer from serious sparsity. In this paper, we present a tailored AutoEncoder-coupled Transformer Network (AETN), by which we overcome these challenges and achieve the goals of reducing manual efforts and boosting performance. We have deployed the model at Tencent, and both online/offline experiments from multiple domains of downstream applications have demonstrated the effectiveness of the output user embeddings.