论文标题
相对论量子反弹粒子在均匀的引力场中
Relativistic quantum bouncing particles in a homogeneous gravitational field
论文作者
论文摘要
在本文中,我们研究了重力场中弹跳粒子的波函数的相对论效应。在等价原理的激励下,我们研究了林德勒的klein-gordon和dirac方程与边界条件的坐标,模仿了Minkowski空间中均匀加速的镜子。在非层次主义限制中,共同框架中的所有这些模型都将schrödinger方程的熟悉特征值问题降低为固定地板,在线性重力电位中,正如预期的。我们发现,弹跳狄拉克粒子的两个能级之间的过渡频率大于klein-gordon粒子的对应物,而两者都大于其非依赖性极限。对不同性质颗粒的特征性元素的不同校正与镜面边界周围波函数的不同行为有关。
In this paper, we study the relativistic effect on the wave functions for a bouncing particle in a gravitational field. Motivated by the equivalence principle, we investigate the Klein-Gordon and Dirac equations in Rindler coordinates with the boundary conditions mimicking a uniformly accelerated mirror in Minkowski space. In the nonrelativistic limit, all these models in the comoving frame reduce to the familiar eigenvalue problem for the Schrödinger equation with a fixed floor in a linear gravitational potential, as expected. We find that the transition frequency between two energy levels of a bouncing Dirac particle is greater than the counterpart of a Klein-Gordon particle, while both are greater than their nonrelativistic limit. The different corrections to eigen-energies of particles of different nature are associated with the different behaviors of their wave functions around the mirror boundary.