论文标题

不断发展的科学网络的结构动力学

Structure dynamics of evolving scientific networks

论文作者

Filho, Demival Vasques, O'Neale, Dion R. J.

论文摘要

共同创作网络已在网络科学中进行了广泛的研究,因为它们是一个完美的例子,说明了系统的单个元素如何在复杂的,非平凡的相互作用结构上产生集体现象。但是,共同创作网络实际上是原始两部分网络的单模式预测,我们称之为这里的科学网络,作者是与工件相关的代理 - 他们发表的论文。尽管如此,很少有研究考虑到原始的两部分网络的结构来理解和解释投影网络的拓扑特性。在这里,我们使用来自美国物理社会(APS)的广泛数据集创建了两部分网络,其历史可以追溯到1893年至2015年(包括Arxiv)(1986-2015)。我们研究出版物的时间演变和科学网络的动态结构,考虑了两部分网络的四个主要特征,即程度分布,密度,冗余和周期。我们展示了这种特征如何影响共同授权网络的形成及其观察到的结构特性。尽管大多数学科的网络的结构不会随着时间的流逝而显示出重大变化,但在物理学上,大型合作的出现在很大程度上产生了顶级节点的偏斜程度分布。后者反过来又引起了投影中的巨大集团,从而触发了共同授权网络的相当密集,而原始的两部分网络的密度保持在相同的水平。

Co-authorship networks have been extensively studied in network science as they pose as a perfect example of how single elements of a system give rise to collective phenomena on an intricate, non-trivial structure of interactions. However, co-authorship networks are, in fact, one-mode projections of original bipartite networks, which we call here scientific networks, where authors are agents connected to artifacts - the papers they have published. Nonetheless, few studies take into account the structure of the original bipartite network to understand and explain the topological properties of the projected network. Here, we create bipartite networks using extensive datasets from the American Physical Society (APS) dating back to 1893 up to 2015 inclusive, and from arXiv (1986-2015). We look at the time evolution of publications and at the dynamic structure of scientific networks considering four major features of bipartite networks, namely degree distributions, density, redundancy and cycles. We show how such features shape the formation of co-authorship networks and their observed structural properties. While the structure of the networks of most disciplines does not show significant changes over time, the appearance of large collaborations, in physics, generate largely skewed degree distributions of top nodes. The latter, in turn, induces massive cliques in the projection, triggering considerable densification of the co-authorship network, while the density of the original bipartite network remains at the same levels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源