论文标题
关于homfly的正多项式的注释
A note on HOMFLY polynomial of positive braid links
论文作者
论文摘要
对于一个正辫子链接,一个表示为封闭的正编织的链接,我们就其homfly多项式的前几个系数在几何不变式的角度(例如最大欧拉特征,分裂因子的数量和素数因子的数量)确定。我们的结果可改善康威和琼斯多项式的已知结果。在附录中,我们提出了克伦威尔定理的更简单的证明,当图表是复合材料时,正面编织图代表复合链接。
For a positive braid link, a link represented as a closed positive braids, we determine the first few coefficients of its HOMFLY polynomial in terms of geometric invariants such as, the maximum euler characteristics, the number of split factors, and the number of prime factors. Our results give improvements of known results for Conway and Jones polynomial of positive braid links. In Appendix, we present a simpler proof of theorem of Cromwell, a positive braid diagram represent composite link if and only if the the diagram is composite.