论文标题

当心不断发展的“智能” Web服务!一种集成体系结构策略,以捍卫AI优先组件

Beware the evolving 'intelligent' web service! An integration architecture tactic to guard AI-first components

论文作者

Cummaudo, Alex, Barnett, Scott, Vasa, Rajesh, Grundy, John, Abdelrazek, Mohamed

论文摘要

智能服务通过简单的Restful API端点为开发人员提供了AI的力量,从而抽象了许多机器学习的复杂性。但是,大多数这些智能服务都像计算机视觉随着时间的流逝而学习。当抽象的“黑匣子”中的内部质量被隐藏和发展时,陷阱却依赖于这些不断发展的服务的应用的稳健性。在不适应开发人员计划和构建依赖智能服务的项目的方式的情况下,巨大的差距和风险都会导致项目计划和开发。因此,软件工程师如何最好地降低软件演变的风险,从而确保其自己的应用程序保持质量?我们的建议是一种建筑策略,旨在改善智能服务依赖服务的软件鲁棒性。该策略涉及创建针对智能服务的基准基准的特定应用程序基准数据集,从而减轻进化行为的变化。对我们对该体系结构的实施的技术评估表明,该策略如何使用由331张图像组成的数据集进行1,054例实质性置信度演变和2,461例对响应标签集进行实质性更改的案例。

Intelligent services provide the power of AI to developers via simple RESTful API endpoints, abstracting away many complexities of machine learning. However, most of these intelligent services-such as computer vision-continually learn with time. When the internals within the abstracted 'black box' become hidden and evolve, pitfalls emerge in the robustness of applications that depend on these evolving services. Without adapting the way developers plan and construct projects reliant on intelligent services, significant gaps and risks result in both project planning and development. Therefore, how can software engineers best mitigate software evolution risk moving forward, thereby ensuring that their own applications maintain quality? Our proposal is an architectural tactic designed to improve intelligent service-dependent software robustness. The tactic involves creating an application-specific benchmark dataset baselined against an intelligent service, enabling evolutionary behaviour changes to be mitigated. A technical evaluation of our implementation of this architecture demonstrates how the tactic can identify 1,054 cases of substantial confidence evolution and 2,461 cases of substantial changes to response label sets using a dataset consisting of 331 images that evolve when sent to a service.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源