论文标题

高保真软件定义的量子逻辑

High-fidelity software-defined quantum logic on a superconducting qudit

论文作者

Wu, Xian, Tomarken, S. L., Petersson, N. Anders, Martinez, L. A., Rosen, Yaniv J., DuBois, Jonathan L

论文摘要

几乎所有现代的固态量子处理器都使用一组离散的量子操作(门)接近量子计算,这些计算只能使用少数原始门来实现通用量子控制。原则上,这种方法是高度灵活的,可以完全控制Qubits的希尔伯特空间,而无需为每个应用程序开发特定的控制协议。但是,量子硬件上的当前错误率对可以将混合在一起的原始门数(具有更复杂的错误率)的数量进行了严格的限制,并保持可行。在这里,我们报告了实施软件定义的$ 0 \ leftrightArrow2 $交换门的努力,该交换门不依赖原始门集,并达到平均售票的$ 99.4 \%\%$。我们的工作代表了通过使用最佳控制技术来实现非平凡量子控制的替代性,完全可以概括的途径。我们描述了计算最佳控制解决方案,校准量子和经典硬件链的过程,并表征最佳控制门的忠诚度。

Nearly all modern solid-state quantum processors approach quantum computation with a set of discrete qubit operations (gates) that can achieve universal quantum control with only a handful of primitive gates. In principle, this approach is highly flexible, allowing full control over the qubits' Hilbert space without necessitating the development of specific control protocols for each application. However, current error rates on quantum hardware place harsh limits on the number of primitive gates that can be concatenated together (with compounding error rates) and remain viable. Here, we report our efforts at implementing a software-defined $0\leftrightarrow2$ SWAP gate that does not rely on a primitive gate set and achieves an average gate fidelity of $99.4\%$. Our work represents an alternative, fully generalizable route towards achieving nontrivial quantum control through the use of optimal control techniques. We describe our procedure for computing optimal control solutions, calibrating the quantum and classical hardware chain, and characterizing the fidelity of the optimal control gate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源