论文标题

置换问题:在点云上学习的各向异性卷积层

Permutation Matters: Anisotropic Convolutional Layer for Learning on Point Clouds

论文作者

Gao, Zhongpai, Zhai, Guangtao, Yan, Junchi, Yang, Xiaokang

论文摘要

在许多3D计算机视觉应用中,对点云上对点云的有效表示学习的需求不断增长。卷积神经网络(CNN)的成功故事的背后是数据(例如,图像)是欧几里得结构的。但是,点云是不规则和无序的。已经使用各向同性过滤器开发了各种点神经网络,或使用加权矩阵来克服点云上的结构不一致。但是,各向同性过滤器或加权矩阵限制了表示功率。在本文中,我们提出了一个透明的各向异性卷积操作(PAI-CONV),该操作根据一组球体表面上的一组均匀分布的核点,并执行共享的各向异性过滤器,该杂物对每个点的软渗透矩阵计算每个点的软渗透矩阵。实际上,具有内核点的点产物与在变压器中的键相比,在自然语言处理(NLP)中广泛使用。从这个角度来看,PAI-CONV可以被视为点云的变压器,它在物理上是有意义的,并且可以与有效的随机点采样方法合作。对点云的全面实验表明,与最先进的方法相比,PAI-CONV在分类和语义分割任务中产生竞争成果。

It has witnessed a growing demand for efficient representation learning on point clouds in many 3D computer vision applications. Behind the success story of convolutional neural networks (CNNs) is that the data (e.g., images) are Euclidean structured. However, point clouds are irregular and unordered. Various point neural networks have been developed with isotropic filters or using weighting matrices to overcome the structure inconsistency on point clouds. However, isotropic filters or weighting matrices limit the representation power. In this paper, we propose a permutable anisotropic convolutional operation (PAI-Conv) that calculates soft-permutation matrices for each point using dot-product attention according to a set of evenly distributed kernel points on a sphere's surface and performs shared anisotropic filters. In fact, dot product with kernel points is by analogy with the dot-product with keys in Transformer as widely used in natural language processing (NLP). From this perspective, PAI-Conv can be regarded as the transformer for point clouds, which is physically meaningful and is robust to cooperate with the efficient random point sampling method. Comprehensive experiments on point clouds demonstrate that PAI-Conv produces competitive results in classification and semantic segmentation tasks compared to state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源