论文标题

在动态场景中对多个智能代理的强大轨迹预测

Robust Trajectory Forecasting for Multiple Intelligent Agents in Dynamic Scene

论文作者

Zhu, Yanliang, Ren, Dongchun, Fan, Mingyu, Qian, Deheng, Li, Xin, Xia, Huaxia

论文摘要

在动态场景中,多种相互作用剂的轨迹预测或轨迹预测是许多应用程序(例如机器人系统和自主驾驶)的重要问题。问题是一个巨大的挑战,因为代理商之间的复杂互动及其与周围场景的互动。在本文中,我们提出了一种新颖的方法,用于在动态场景中对多种智能代理进行鲁棒轨迹的预测。所提出的方法由三个主要相互关联的组成部分组成:用于全球时空交互特征提取的交互网,一个用于解码动态场景的环境网(即,代理的周围道路拓扑)以及结合了空间extoral特征的预测网,场景特征,以前的轨迹,以及一些随机的轨迹,以预测迹象的迹象。关于步行和车辆的异质数据集的实验表明,所提出的方法在预测准确性方面优于最先进的预测方法。

Trajectory forecasting, or trajectory prediction, of multiple interacting agents in dynamic scenes, is an important problem for many applications, such as robotic systems and autonomous driving. The problem is a great challenge because of the complex interactions among the agents and their interactions with the surrounding scenes. In this paper, we present a novel method for the robust trajectory forecasting of multiple intelligent agents in dynamic scenes. The proposed method consists of three major interrelated components: an interaction net for global spatiotemporal interactive feature extraction, an environment net for decoding dynamic scenes (i.e., the surrounding road topology of an agent), and a prediction net that combines the spatiotemporal feature, the scene feature, the past trajectories of agents and some random noise for the robust trajectory prediction of agents. Experiments on pedestrian-walking and vehicle-pedestrian heterogeneous datasets demonstrate that the proposed method outperforms the state-of-the-art prediction methods in terms of prediction accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源