论文标题

向前误差校正对通信意识逃避攻击的影响

Effects of Forward Error Correction on Communications Aware Evasion Attacks

论文作者

DelVecchio, Matthew, Flowers, Bryse, Headley, William C.

论文摘要

最近的工作表明,针对射频机器学习(RFML)应用程序开发的对抗机器学习对深神经网络(DNN)的影响。尽管这些攻击已被证明在破坏了窃听者的表现方面取得了成功,但它们未能完全支持成功预期的交流的主要目标。为了解决这一问题,最近开发了一个通信感知的攻击框架,该框架可以通过新颖的使用DNN智能地创建对抗性通信信号,在相对的逃避目标和预期的沟通之间取得更有效的平衡。鉴于在大多数部署的系统中对正向误差校正(FEC)编码的几乎无处不在,以纠正出现的错误,因此将FEC纳入此框架是这项先前工作的自然扩展,并且可以在更不利的环境中提高性能。因此,这项工作通过改进的损失功能和设计注意事项为框架提供了贡献,以纳入传输信号中FEC代码使用的固有知识。性能分析表明,即使没有假定对编码方案的明确知识,FEC编码也可以改善通信意识的对抗攻击,并允许在平衡逃避和预期通信的相对目标方面改善先前艺术的性能。

Recent work has shown the impact of adversarial machine learning on deep neural networks (DNNs) developed for Radio Frequency Machine Learning (RFML) applications. While these attacks have been shown to be successful in disrupting the performance of an eavesdropper, they fail to fully support the primary goal of successful intended communication. To remedy this, a communications-aware attack framework was recently developed that allows for a more effective balance between the opposing goals of evasion and intended communication through the novel use of a DNN to intelligently create the adversarial communication signal. Given the near ubiquitous usage of forward error correction (FEC) coding in the majority of deployed systems to correct errors that arise, incorporating FEC in this framework is a natural extension of this prior work and will allow for improved performance in more adverse environments. This work therefore provides contributions to the framework through improved loss functions and design considerations to incorporate inherent knowledge of the usage of FEC codes within the transmitted signal. Performance analysis shows that FEC coding improves the communications aware adversarial attack even if no explicit knowledge of the coding scheme is assumed and allows for improved performance over the prior art in balancing the opposing goals of evasion and intended communications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源