论文标题

泰勒(Taylor)在BMO上的功能定理,并应用于BMO本地最小化器

Taylor's Theorem for Functionals on BMO with Application to BMO Local Minimizers

论文作者

Spector, Daniel E., Spector, Scott J.

论文摘要

在本说明中,为能量功能建立了两个结果,这些功能由$ w(\ Mathbf x,\ nabla \ Mathbf U(\ Mathbf x))$ ofum $ ws $ω\ subset \ subset \ subset \ mathbb {r}^n $与$ \ nabla \ nabla \ nabla \ mathbf U \ in bmath in time n ocy(\ mathbf x))上约翰&Nirenberg的有限平均振荡功能空间。泰勒定理的一个版本首先证明是有效的,只要intaptand $ w $具有多项式增长。然后使用该结果证明,对于dirichlet,neumann和混合问题,每个lipschitz-连续的解决方案是相应的欧拉 - 拉格朗日方程式,在该方程中,能量的第二个变化是均匀积极的,这是$ w^^{1,bmo}(1,bmo}(ω; \ mathbbbb {subbb {subbb {subbb {subbbe $ w^{1,1}(ω; \ mathbb {r}^n)$,bmo(ω; {\ mathbb r}^{n \ times n} in bmo(ω; {\ mathbb r}^{n})$弱衍生物$ \ nabla \ mathbf u \ $。

In this note two results are established for energy functionals that are given by the integral of $ W(\mathbf x,\nabla \mathbf u(\mathbf x))$ over $Ω\subset\mathbb{R}^n$ with $\nabla \mathbf u \in BMO(Ω;{\mathbb R}^{N\times n})$, the space of functions of Bounded Mean Oscillation of John & Nirenberg. A version of Taylor's theorem is first shown to be valid provided the integrand $W$ has polynomial growth. This result is then used to demonstrate that, for the Dirichlet, Neumann, and mixed problems, every Lipschitz-continuous solution of the corresponding Euler-Lagrange equations at which the second variation of the energy is uniformly positive is a strict local minimizer of the energy in $W^{1,BMO}(Ω;\mathbb{R}^N)$, the subspace of the Sobolev space $W^{1,1}(Ω;\mathbb{R}^N)$ for which the weak derivative $\nabla\mathbf u \in BMO(Ω;{\mathbb R}^{N\times n})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源