论文标题

单晶的晶圆尺度的异质整合\ b {eta} -ga2O3薄膜SIC上的热管理,通过离子切割技术

Wafer-scale Heterogeneous Integration of Monocrystalline \b{eta}-Ga2O3 Thin Films on SiC for Thermal Management by Ion-Cutting Technique

论文作者

Cheng, Zhe, Mu, Fengwen, You, Tiangui, Xu, Wenhui, Shi, Jingjing, Liao, Michael E., Wang, Yekan, Huynh, Kenny, Suga, Tadatomo, Goorsky, Mark S., Ou, Xin, Graham, Samuel

论文摘要

超宽的带隙,高击穿电场和大面积的负担得起的底物使\ b {eta} -GA2O3有望用于应用下一代电力电子设备的应用,而其导热率的应用至少比其他宽/超级/超级/超级/超级/超级宽度频道半径量低一个数量级。为了避免局部焦耳加热引起的设备性能和可靠性的降解,激进的热管理策略至关重要,尤其是对于高功率高频应用。这项工作报告了一种可扩展的热管理策略,可以通过离子切割技术在高热导率SIC底物上进行异质整合晶圆尺度的单晶\ b {eta} -Ga2O3薄膜。 \ b {eta} -GA2O3-SIC接口的热边界电导(TBC)和\ b {eta} -ga2O3薄膜的热电导率是通过时间域的热反射率(TDTR)测量的,以评估层间厚度和热射击的效果。进行了材料表征,以了解这些结构中热传输的机制。结果表明,\ b {eta} -GA2O3-SIC TBC值随着层间厚度的减小而增加,并且由于在膜中去除植入诱导的应变,在800 OC退火后退火后,\ b {eta} -GA2O3热电导率增加了两倍以上。构建了Callaway模型,以了解测得的热导率。 TBC和GA2O3热导率的小斑点变化证实了粘结和去角质的均匀性和高质量。我们的工作为电力电子的热管理和\ b {eta} -GA2O3相关的半导体设备铺平了道路。

The ultra-wide bandgap, high breakdown electric field, and large-area affordable substrates make \b{eta}-Ga2O3 promising for applications of next-generation power electronics while its thermal conductivity is at least one order of magnitude lower than other wide/ultrawide bandgap semiconductors. To avoid the degradation of device performance and reliability induced by the localized Joule-heating, aggressive thermal management strategies are essential, especially for high-power high-frequency applications. This work reports a scalable thermal management strategy to heterogeneously integrate wafer-scale monocrystalline \b{eta}-Ga2O3 thin films on high thermal conductivity SiC substrates by ion-cutting technique. The thermal boundary conductance (TBC) of the \b{eta}-Ga2O3-SiC interfaces and thermal conductivity of the \b{eta}-Ga2O3 thin films were measured by Time-domain Thermoreflectance (TDTR) to evaluate the effects of interlayer thickness and thermal annealing. Materials characterizations were performed to understand the mechanisms of thermal transport in these structures. The results show that the \b{eta}-Ga2O3-SiC TBC values increase with decreasing interlayer thickness and the \b{eta}-Ga2O3 thermal conductivity increases more than twice after annealing at 800 oC due to the removal of implantation-induced strain in the films. A Callaway model is built to understand the measured thermal conductivity. Small spot-to-spot variations of both TBC and Ga2O3 thermal conductivity confirm the uniformity and high-quality of the bonding and exfoliation. Our work paves the way for thermal management of power electronics and \b{eta}-Ga2O3 related semiconductor devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源