论文标题
球形janus颗粒的角度捕获
Angular Trapping of Spherical Janus Particles
论文作者
论文摘要
开发角度诱捕方法,这将使光学镊子能够旋转微珠珠,对于在广泛的扭矩产生过程中的生物大分子研究中至关重要。在这里,我们报告了一种基于复合janus颗粒的新型受控角捕获方法。我们使用了化学合成的Janus粒子,该粒子分别由聚苯乙烯(PS)和聚(甲基丙烯酸甲酯)(PMMA)组成的两个半球作为模型系统,以证明这种方法。通过计算和实验研究,我们证明了在线性极化激光陷阱中控制Janus粒子旋转的可行性。我们的结果表明,Janus粒子将其两个半球的界面排列到平行于激光传播方向以及激光极化方向。在我们的实验中,使用CMOS摄像机可以轻松而直接地观察粒子的旋转状态,并且不需要复杂的光学检测系统。激光陷阱中Janus粒子的旋转可以通过控制激光极化方向实时完全控制。我们新开发的角度捕获技术具有易于实现和实时可控性的巨大优势。考虑到Janus颗粒的易于化学合成和角捕获的实现,这种新方法具有成为一种一般角度捕获方法。我们预计,这种新方法将显着扩大生物物理学群落中角捕获的可用性,并扩大通过角捕获方法可以实现的研究范围。
Developing angular trapping methods, which will enable optical tweezers to rotate a micronized bead, is of great importance for the studies of biomacromolecules during a wide range of torque-generation processes. Here we report a novel controlled angular trapping method based on composite Janus particles. We used a chemically synthesized Janus particle, which consists of two hemispheres made of polystyrene (PS) and poly(methyl methacrylate) (PMMA) respectively, as a model system to demonstrate this method. Through computational and experimental studies, we demonstrated the feasibility to control the rotation of a Janus particle in a linearly polarized laser trap. Our results showed that the Janus particle aligned its two hemisphere's interface parallel to the laser propagation direction as well as the laser polarization direction. In our experiments, the rotational state of the particle can be easily and directly visualized by using a CMOS camera, and does not require complex optical detection system. The rotation of the Janus particle in the laser trap can be fully controlled in real time by controlling the laser polarization direction. Our newly developed angular trapping technique has the great advantage of easy implementation and real time controllability. Considering the easy chemical synthesis of Janus particles and implementation of the angular trapping, this novel method has the potential of becoming a general angular trapping method. We anticipate that this new method will significantly broaden the availability of angular trapping in the biophysics community, and expand the scope of the research that can be enabled by the angular trapping approach.