论文标题
拓扑azumaya代数的分解
Decomposition of Topological Azumaya Algebras
论文作者
论文摘要
令$ \ Mathcal {a} $为tem $ mn $的拓扑azumaya代数,$ mn $上的$ x $ x $。我们为正整数$ m $和$ n $提供条件,并提供$ x $的空间$ x $,以便可以将$ \ mathcal {a} $分解为拓扑azumaya代数$ m $ m $和$ n $的张量。然后,我们证明,如果$ m <n $和$ x $的尺寸高于$ 200万美元+1 $,则$ \ Mathcal {a} $可能没有这种分解。
Let $\mathcal{A}$ be a topological Azumaya algebra of degree $mn$ over a CW complex $X$. We give conditions for the positive integers $m$ and $n$, and the space $X$ so that $\mathcal{A}$ can be decomposed as the tensor product of topological Azumaya algebras of degrees $m$ and $n$. Then we prove that if $m<n$ and the dimension of $X$ is higher than $2m+1$, $\mathcal{A}$ may not have such decomposition.