论文标题
成分计数规则和欧米茄光生源
The Constituent Counting Rule and Omega Photoproduction
论文作者
论文摘要
已经发现,成分计数裁决(CCR)为许多艰苦的独家过程提供了。它可以预测高能的差分横截面,并固定$ \cosθ_{c.m。} $应遵循$ \ frac {dσ} {dt} {dt} \ sim \ sim \ frac {1} {s^{n-2}} $,而$ n $是$ n $涉及反应的组成数量。在这里,我们对$θ_{c.m。} \ sim 90^\ circ $的反应$γp\rightArrowΩp$的反应提供了深入的分析,使用具有$ s = 5-8 $ gev $^2 $的CLAS数据,在此证明CCR在其他反应中都起作用。我们主张一种严格的方法来选择数据来测试CCR并利用泰勒系列的扩展来利用来自附近角度箱的数据。天真,如果光子在$ q \ bar {q} $状态),则此反应将具有$ n = 9 $(或$ n = 10 $),并且我们期望$ \ sim s^{ - 7} $($ s^{ - 8} $)的缩放。相反,观察到$ s^{ - (9.08 \ pm 0.11)} $的缩放。研究了对幼稚CCR假设的明显失败的解释。
The constituent counting ruling (CCR) has been found to hold for numerous hard, exclusive processes. It predicts the differential cross section at high energies and fixed $\cos θ_{c.m.}$ should follow $\frac{d σ}{dt} \sim \frac{1}{s^{n-2}}$, where $n$ is the minimal number of constituents involved in the reaction. Here we provide an in-depth analysis of the reaction $γp \rightarrow ωp$ at $θ_{c.m.}\sim 90^\circ$ using CLAS data with an energy range of $s = 5 - 8$ GeV$^2$, where the CCR has been shown to work in other reactions. We argue for a stringent method to select data to test the CCR and utilize a Taylor-series expansion to take advantage of data from nearby angle bins in our analysis. Naïvely, this reaction would have $n=9$ (or $n=10$ if the photon is in a $q\bar{q}$ state) and we would expect a scaling of $\sim s^{-7}$ ($s^{-8}$). Instead, a scaling of $s^{-(9.08 \pm 0.11)}$ was observed. Explanations for this apparent failure of the naïve CCR assumptions are examined.