论文标题
无模式的oct中的快速对数
Rapidity Logarithms in SCET Without Modes
论文作者
论文摘要
我们在表达软性共线有效理论的背景下重新检查了具有速度差异的可观察到物,在这种情况下,红外自由度未明确分为模式。我们将Sudakov的形式视为巨大的载体玻色子和在小横向动量下的Lepton Pairs的Drell-Yan产生作为示例的例子。在这种形式主义中,速度差异将方案依赖性引入了有效理论,并与在软匹配条件下出现的大对数有关。该方案依赖性可用于得出相应的快速性重量化组方程,而速率自然地将硬,软和喷射贡献分解为无明确模式的情况。
We re-examine observables with rapidity divergences in the context of a formulation of Soft-Collinear Effective Theory in which infrared degrees of freedom are not explicitly separated into modes. We consider the Sudakov form factor with a massive vector boson and Drell-Yan production of lepton pairs at small transverse momentum as demonstrative examples. In this formalism, rapidity divergences introduce a scheme dependence into the effective theory and are associated with large logarithms appearing in the soft matching conditions. This scheme dependence may be used to derive the corresponding rapidity renormalization group equations, and rates naturally factorize into hard, soft and jet contributions without the introduction of explicit modes.