论文标题
使用递归近似任务进行图像分割的多任务深度学习
Multi-task deep learning for image segmentation using recursive approximation tasks
论文作者
论文摘要
完全监督的深层神经网络用于细分通常需要大量的像素级标签,这些标签手动创建的昂贵。在这项工作中,我们开发了一种多任务学习方法来放松这一约束。我们将分割问题视为一系列近似子问题的序列,这些序列是递归定义的,并且近似准确性的水平提高。子问题由一个由1)框架组成的框架来处理,该框架是从像素级地面真理分段掩盖中学习的一小部分图像的掩盖,2)递归近似任务,该任务执行部分对象区域学习和数据驱动的掩盖掩盖从每个对象实例开始,并启动了一个问题,并在每个对象实例上启动了跨度,并宣布了其他问题,以及其他任务,以及其他任务,是其他任务构成的任务,并且是其他任务,并且是其他任务构成的任务,该任务构成了其他任务。学习专门的功能。大多数训练图像仅由(粗大的)部分面具标记,这些面具不包含确切的对象边界,而不是由其完整的分割掩码标记。在训练阶段,近似任务了解了这些部分面具的统计数据,并且部分区域会以完全数据驱动的方式从细分任务中学习的对象边界进行递归增加,以帮助对象边界。对网络进行了极少量精确分段图像和大量粗标签的训练。因此,可以以便宜的方式获得注释。我们在三个应用中使用显微镜图像和超声图像证明了方法的效率。
Fully supervised deep neural networks for segmentation usually require a massive amount of pixel-level labels which are manually expensive to create. In this work, we develop a multi-task learning method to relax this constraint. We regard the segmentation problem as a sequence of approximation subproblems that are recursively defined and in increasing levels of approximation accuracy. The subproblems are handled by a framework that consists of 1) a segmentation task that learns from pixel-level ground truth segmentation masks of a small fraction of the images, 2) a recursive approximation task that conducts partial object regions learning and data-driven mask evolution starting from partial masks of each object instance, and 3) other problem oriented auxiliary tasks that are trained with sparse annotations and promote the learning of dedicated features. Most training images are only labeled by (rough) partial masks, which do not contain exact object boundaries, rather than by their full segmentation masks. During the training phase, the approximation task learns the statistics of these partial masks, and the partial regions are recursively increased towards object boundaries aided by the learned information from the segmentation task in a fully data-driven fashion. The network is trained on an extremely small amount of precisely segmented images and a large set of coarse labels. Annotations can thus be obtained in a cheap way. We demonstrate the efficiency of our approach in three applications with microscopy images and ultrasound images.