论文标题
多维的持续分数和符号的托拉尔翻译编码
Multidimensional continued fractions and symbolic codings of toral translations
论文作者
论文摘要
在$ d $维的圆环上找到良好的符号编码是一个长期的问题,这些编码享受了诸如低因素复杂性和良好的本地差异属性(如良好的局部差异)的美丽属性。受劳齐(Rauzy)方法的启发,我们根据多维持续分数算法构建此类编码,这些算法通过替换序列实现。特别是,鉴于任何指数收敛的持续分数算法,这些序列会导致重新归一化方案,这些方案以自然方式在各个尺度上产生符号化的托拉尔翻译和有限的剩余集。 可以根据施加在附着的符号动力学系统上的PISOT类型条件来查看持续分数算法的指数收敛属性。利用这一事实,我们的方法提供了一种系统的方法来确认广泛类别的符号动力学系统的纯粹离散频谱结果。确实,正如我们的例子说明的那样,我们能够确认许多众所周知的替代序列家庭的PISOT猜想。这些示例包括诸如雅各比 - 佩伦,布伦,卡塞恩 - - 塞尔默和arnoux--rauzy算法之类的经典算法。 结果,我们获得了几乎所有具有因子复杂性$ 2N+1 $的$ 2 $维圆环的翻译的符号编码,这些曲线是平衡单词的,这导致了多尺度有限的剩余集。使用Brun算法,我们还提供了几乎所有$ 3 $维的Toral Translations具有多尺度有限的剩余套件的符号编码。
It has been a long standing problem to find good symbolic codings for translations on the $d$-dimensional torus that enjoy the beautiful properties of Sturmian sequences like low factor complexity and good local discrepancy properties. Inspired by Rauzy's approach we construct such codings in terms of multidimensional continued fraction algorithms that are realized by sequences of substitutions. In particular, given any exponentially convergent continued fraction algorithm, these sequences lead to renormalization schemes which produce symbolic codings of toral translations and bounded remainder sets at all scales in a natural way. The exponential convergence properties of a continued fraction algorithm can be viewed in terms of a Pisot type condition imposed on an attached symbolic dynamical system. Using this fact, our approach provides a systematic way to confirm purely discrete spectrum results for wide classes of symbolic dynamical systems. Indeed, as our examples illustrate, we are able to confirm the Pisot conjecture for many well-known families of sequences of substitutions. These examples comprise classical algorithms like the Jacobi--Perron, Brun, Cassaigne--Selmer, and Arnoux--Rauzy algorithms. As a consequence, we gain symbolic codings of almost all translations of the $2$-dimensional torus having factor complexity $2n+1$ that are balanced for words, which leads to multiscale bounded remainder sets. Using the Brun algorithm, we also give symbolic codings of almost all $3$-dimensional toral translations having multiscale bounded remainder sets.