论文标题
在模拟的光曲线中检测EXOMON,并具有正则卷积神经网络
Detection of exomoons in simulated light curves with a regularized convolutional neural network
论文作者
论文摘要
在我们的太阳系中的行星周围已经发现了许多卫星,但是在任何确认的外星行星周围都没有发现任何卫星。我们测试了有监督的卷积神经网络的可行性,以对行星宿主星星的光度传输光曲线进行分类并识别外显子迁移,同时避免由恒星变异性或仪器噪声引起的假阳性。已知卷积神经网络有助于提高分类任务的准确性。通常在不研究噪声对训练过程的影响的情况下进行网络优化。在这里,我们设计并优化了1D卷积神经网络,以对光度传输光曲线进行分类。我们通过总变化损失正规化网络,以消除数据特征中不必要的变化。使用数值实验,我们证明了我们的网络的好处,这会产生与标准网络解决方案相当或更好的结果。最重要的是,我们的网络显然胜过系外行星科学中使用的经典方法来识别月球般的信号。因此,提出的网络是一种有前途的方法,用于分析将来真实的过境光曲线。
Many moons have been detected around planets in our Solar System, but none has been detected unambiguously around any of the confirmed extrasolar planets. We test the feasibility of a supervised convolutional neural network to classify photometric transit light curves of planet-host stars and identify exomoon transits, while avoiding false positives caused by stellar variability or instrumental noise. Convolutional neural networks are known to have contributed to improving the accuracy of classification tasks. The network optimization is typically performed without studying the effect of noise on the training process. Here we design and optimize a 1D convolutional neural network to classify photometric transit light curves. We regularize the network by the total variation loss in order to remove unwanted variations in the data features. Using numerical experiments, we demonstrate the benefits of our network, which produces results comparable to or better than the standard network solutions. Most importantly, our network clearly outperforms a classical method used in exoplanet science to identify moon-like signals. Thus the proposed network is a promising approach for analyzing real transit light curves in the future.