论文标题
标量有效场理论的隐藏形式不变性
Hidden Conformal Invariance of Scalar Effective Field Theories
论文作者
论文摘要
我们认为,共形不变性是一个链接多个标量有效字段理论的通用线程,它们出现在双拷贝和散射方程中。对于衍生耦合的标量,具有四分之一的$ {\ cal o}(p^4)$顶点,经典的保形不变性决定了一个无限互动的塔楼,与迪拉克 - 出生的智能理论完全恰恰与分析上的互动相吻合,继续在分析上继续延伸到时间段内的尺寸$ d = 0 $ d = 0 $。对于四分之一的$ {\ cal o}(p^6)$顶点,经典的共形不变性将理论限制为$ d = -2 $ dimensions中的特殊galileon。我们还通过证明它们的幅度是由保形病房身份唯一固定的,从而验证了这些理论的保形不变性。在这些理论中,保形不变性比刻度不变性要严格得多。
We argue that conformal invariance is a common thread linking several scalar effective field theories that appear in the double copy and scattering equations. For a derivatively coupled scalar with a quartic ${\cal O}(p^4)$ vertex, classical conformal invariance dictates an infinite tower of additional interactions that coincide exactly with Dirac-Born-Infeld theory analytically continued to spacetime dimension $D=0$. For the case of a quartic ${\cal O}(p^6)$ vertex, classical conformal invariance constrains the theory to be the special Galileon in $D=-2$ dimensions. We also verify the conformal invariance of these theories by showing that their amplitudes are uniquely fixed by the conformal Ward identities. In these theories, conformal invariance is a much more stringent constraint than scale invariance.