论文标题

大规模推荐系统中的辩护候选人生成的对比度学习

Contrastive Learning for Debiased Candidate Generation in Large-Scale Recommender Systems

论文作者

Zhou, Chang, Ma, Jianxin, Zhang, Jianwei, Zhou, Jingren, Yang, Hongxia

论文摘要

深层候选人的生成(DCG)通过代表性学习将相关项目的收集从数十亿到数百个缩小,在工业推荐系统中已经普遍存在。标准方法通过采样可提供更好的可伸缩性,以类似于语言建模的方式来解决DCG的问题,从而近似最大似然估计(MLE)。但是,实时推荐系统面临着严重的暴露偏见,并且词汇比自然语言大几个数量级,这意味着MLE从长远来看会保留甚至加剧暴露偏见,以忠实地适合观察到的样本。在本文中,我们从理论上证明,对比损失的流行选择相当于通过反向倾向加权减少暴露偏见,这为理解对比性学习的有效性提供了一种新的观点。根据理论发现,我们设计了CLREC,这是一种对比的学习方法,可在具有极大候选大小的推荐系统中改善DCG。我们进一步改进了CLREC并提出多CLREC,以精确的多思维意识降低。我们的方法已成功地部署在淘宝(Taobao),那里至少四个月的在线A/B测试和离线分析证明了其实质性改进,包括大幅度降低了Matthew效应。

Deep candidate generation (DCG) that narrows down the collection of relevant items from billions to hundreds via representation learning has become prevalent in industrial recommender systems. Standard approaches approximate maximum likelihood estimation (MLE) through sampling for better scalability and address the problem of DCG in a way similar to language modeling. However, live recommender systems face severe exposure bias and have a vocabulary several orders of magnitude larger than that of natural language, implying that MLE will preserve and even exacerbate the exposure bias in the long run in order to faithfully fit the observed samples. In this paper, we theoretically prove that a popular choice of contrastive loss is equivalent to reducing the exposure bias via inverse propensity weighting, which provides a new perspective for understanding the effectiveness of contrastive learning. Based on the theoretical discovery, we design CLRec, a contrastive learning method to improve DCG in terms of fairness, effectiveness and efficiency in recommender systems with extremely large candidate size. We further improve upon CLRec and propose Multi-CLRec, for accurate multi-intention aware bias reduction. Our methods have been successfully deployed in Taobao, where at least four-month online A/B tests and offline analyses demonstrate its substantial improvements, including a dramatic reduction in the Matthew effect.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源