论文标题
在移动设备上使用深度度量学习的行为生物识别验证的框架
A Framework for Behavioral Biometric Authentication using Deep Metric Learning on Mobile Devices
论文作者
论文摘要
使用行为生物识别技术的移动身份验证一直是研究的活跃领域。现有的研究依赖于构建机器学习分类器来识别个人的独特模式。但是,这些分类器不足以学习判别特征。当在移动设备上实施时,他们会面临行为动态,数据隐私和侧通道泄漏的新挑战。为了应对这些挑战,我们提出了一个新框架,以合并电池供电的移动设备的培训,因此私人数据永远不会离开设备,可以灵活地安排培训以适应运行时的行为模式。我们将分类问题重新构建为深度度量学习,以提高判别能力,并通过将噪声签名嵌入传感信号中而无需牺牲过多的可用性而设计有效的对策,以阻止侧渠道泄漏。该实验证明了三个公共数据集的身份验证精度超过95%,从多级分类中获得了15%的收益,其数据和鲁棒性较小,对蛮力和侧向通道攻击的稳健性分别为99%和90%的成功。我们显示了使用移动CPU进行培训的可行性,其中训练100个时期的时间不到10分钟,并且可以通过功能转移来提高3-5次。最后,我们介绍了内存,能量和计算开销。我们的结果表明,训练比观看视频和玩游戏要比观看视频和能量略高的能量要少。
Mobile authentication using behavioral biometrics has been an active area of research. Existing research relies on building machine learning classifiers to recognize an individual's unique patterns. However, these classifiers are not powerful enough to learn the discriminative features. When implemented on the mobile devices, they face new challenges from the behavioral dynamics, data privacy and side-channel leaks. To address these challenges, we present a new framework to incorporate training on battery-powered mobile devices, so private data never leaves the device and training can be flexibly scheduled to adapt the behavioral patterns at runtime. We re-formulate the classification problem into deep metric learning to improve the discriminative power and design an effective countermeasure to thwart side-channel leaks by embedding a noise signature in the sensing signals without sacrificing too much usability. The experiments demonstrate authentication accuracy over 95% on three public datasets, a sheer 15% gain from multi-class classification with less data and robustness against brute-force and side-channel attacks with 99% and 90% success, respectively. We show the feasibility of training with mobile CPUs, where training 100 epochs takes less than 10 mins and can be boosted 3-5 times with feature transfer. Finally, we profile memory, energy and computational overhead. Our results indicate that training consumes lower energy than watching videos and slightly higher energy than playing games.