论文标题
Covid-net s:通过培训和验证深度神经网络的地理范围和不透明度评分SARS-COV-2肺部疾病严重程度的胸部X射线评分,朝着计算机辅助的严重程度评估。
COVID-Net S: Towards computer-aided severity assessment via training and validation of deep neural networks for geographic extent and opacity extent scoring of chest X-rays for SARS-CoV-2 lung disease severity
论文作者
论文摘要
背景:严重急性呼吸综合症2(SARS-COV-2)的有效护理和治疗计划的关键步骤是COVID-19大流行的原因,是对疾病进展的严重程度的评估。胸部X射线(CXR)通常用于评估SARS-COV-2的严重性,其中两个重要的评估指标是肺部受累和不透明度程度的程度。在这项概念验证研究中,我们使用深度学习系统评估了SARS-COV-2肺疾病严重程度的计算机辅助评分的可行性。 材料和方法:数据由SARS-COV-2阳性患者病例的396个CXR组成。两位经过董事会认证的专家胸部放射科医生(拥有20多年的经验)和二年级放射学居民对地理范围和不透明范围进行了评分。我们将其称为Covid-Net s的本研究中使用的深神经网络基于Covid-Net网络体系结构。使用研究中的CXR随机子集,我们独立学习了100个网络(50个进行地理范围评分,进行50个进行不透明度得分),我们使用分层的蒙特卡洛交叉验证实验评估了网络。 调查结果:在分层的Monte Carlo Cross-Validation实验室中,Covid-Net的深神经网络分别在预测分数和放射科医生分别在地理范围和不透明度的范围内,在预测分数和放射科医生分别在地理位置范围和不透明度之间产生了R $^2 $ $^2 $ $ \ pm $ \ pm $ 0.032和0.635 $ \ pm $ 0.044。最佳性能网络分别在地理范围和不透明度范围内,预测分数和放射科医生得分之间达到了R $^2 $ 0.739和0.741。 解释:结果是有希望的,表明在CXR上使用深神网络可能是用于评估SARS-COV-2肺疾病严重程度的计算机辅助评估的有效工具,尽管在采用常规临床使用之前需要进行其他研究。
Background: A critical step in effective care and treatment planning for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the COVID-19 pandemic, is the assessment of the severity of disease progression. Chest x-rays (CXRs) are often used to assess SARS-CoV-2 severity, with two important assessment metrics being extent of lung involvement and degree of opacity. In this proof-of-concept study, we assess the feasibility of computer-aided scoring of CXRs of SARS-CoV-2 lung disease severity using a deep learning system. Materials and Methods: Data consisted of 396 CXRs from SARS-CoV-2 positive patient cases. Geographic extent and opacity extent were scored by two board-certified expert chest radiologists (with 20+ years of experience) and a 2nd-year radiology resident. The deep neural networks used in this study, which we name COVID-Net S, are based on a COVID-Net network architecture. 100 versions of the network were independently learned (50 to perform geographic extent scoring and 50 to perform opacity extent scoring) using random subsets of CXRs from the study, and we evaluated the networks using stratified Monte Carlo cross-validation experiments. Findings: The COVID-Net S deep neural networks yielded R$^2$ of 0.664 $\pm$ 0.032 and 0.635 $\pm$ 0.044 between predicted scores and radiologist scores for geographic extent and opacity extent, respectively, in stratified Monte Carlo cross-validation experiments. The best performing networks achieved R$^2$ of 0.739 and 0.741 between predicted scores and radiologist scores for geographic extent and opacity extent, respectively. Interpretation: The results are promising and suggest that the use of deep neural networks on CXRs could be an effective tool for computer-aided assessment of SARS-CoV-2 lung disease severity, although additional studies are needed before adoption for routine clinical use.