论文标题
扭曲的Mazur图案卫星结和边界的浮子理论
Twisted Mazur pattern satellite knots and bordered Floer theory
论文作者
论文摘要
我们使用边界的漂浮物理论来研究扭曲的Mazur模式卫星结的属性$ q_ {n}(k)$。我们证明$ q_n(k)$不是浮动的同源物,但有两个例外。我们根据扭曲参数$ n $和伴侣$ k $的3代(n} $ $ q_ {n}(k)$计算的3 genus $ k $,我们确定何时将$ q_n(k)$纤维化。作为我们在浮厚度和3摄氏度上的结果的应用,我们验证了许多此类卫星结的整容手术猜想。
We use bordered Floer theory to study properties of twisted Mazur pattern satellite knots $Q_{n}(K)$. We prove that $Q_n(K)$ is not Floer homologically thin, with two exceptions. We calculate the 3-genus of $Q_{n}(K)$ in terms of the twisting parameter $n$ and the 3-genus of the companion $K$, and we determine when $Q_n(K)$ is fibered. As an application to our results on Floer thickness and 3-genus, we verify the Cosmetic Surgery Conjecture for many of these satellite knots.