论文标题
数据驱动的有效求解器,用于在高维度的流动性上的langevin动力学
Data-driven Efficient Solvers for Langevin Dynamics on Manifold in High Dimensions
论文作者
论文摘要
我们研究具有分歧结构的物理系统的Langevin动力学$ \ MATHCAL {M} \ subset \ Mathbb {r}^p $,基于收集的样品点$ \ {\ MATHSF {x} _i \} _i \} _ {i = 1} $ \ MATHCAL {M} $。通过扩散图,我们首先了解反应坐标$ \ {\ MathSf {y} _i \} _ {i = 1}^n \ subset \ subset \ subset \ mathcal {n} $对应于$ \ {\ {\ {\ mathsf {x} _i _i \} _}将差异性变形为$ \ MATHCAL {M} $,并用$ \ ell \ ll p $中的$ \ mathbb {r}^\ ell $嵌入$ \ mathbb {r}^\ ell $。在$ \ Mathcal {n} $上,诱导的langevin动力学在反应坐标方面捕获了缓慢的时间尺度动力学,例如生化反应的构象变化。为了在$ \ Mathcal {n} $上构建langevin Dynamics的有效稳定的近似,我们利用反应坐标$ \ mathsf {y} $在歧管$ \ mathcal {n} $上的相应的fokker-planck方程。我们为此Fokker-Planck方程提出了一个可实现的,无条件稳定的数据驱动的有限卷方程,该方程会自动合并$ \ Mathcal {n} $的歧管结构。此外,我们在$ \ Mathcal {n} $上提供了有限体积方案的加权$ L^2 $收敛分析。提出的有限体积方案在$ \ {\ Mathsf {y} _i \} _ {i = 1}^n $上导致Markov链,并具有近似的过渡概率和最近的邻居点之间的跳跃速率。在无条件稳定的显式时间离散化之后,数据驱动的有限体积方案为$ \ Mathcal {n} $上的Langevin Dynamics提供了近似的Markov过程,并且近似的Markov进程享有详细的平衡,Ergodicition和其他良好的特性。
We study the Langevin dynamics of a physical system with manifold structure $\mathcal{M}\subset\mathbb{R}^p$ based on collected sample points $\{\mathsf{x}_i\}_{i=1}^n \subset \mathcal{M}$ that probe the unknown manifold $\mathcal{M}$. Through the diffusion map, we first learn the reaction coordinates $\{\mathsf{y}_i\}_{i=1}^n\subset \mathcal{N}$ corresponding to $\{\mathsf{x}_i\}_{i=1}^n$, where $\mathcal{N}$ is a manifold diffeomorphic to $\mathcal{M}$ and isometrically embedded in $\mathbb{R}^\ell$ with $\ell \ll p$. The induced Langevin dynamics on $\mathcal{N}$ in terms of the reaction coordinates captures the slow time scale dynamics such as conformational changes in biochemical reactions. To construct an efficient and stable approximation for the Langevin dynamics on $\mathcal{N}$, we leverage the corresponding Fokker-Planck equation on the manifold $\mathcal{N}$ in terms of the reaction coordinates $\mathsf{y}$. We propose an implementable, unconditionally stable, data-driven finite volume scheme for this Fokker-Planck equation, which automatically incorporates the manifold structure of $\mathcal{N}$. Furthermore, we provide a weighted $L^2$ convergence analysis of the finite volume scheme to the Fokker-Planck equation on $\mathcal{N}$. The proposed finite volume scheme leads to a Markov chain on $\{\mathsf{y}_i\}_{i=1}^n$ with an approximated transition probability and jump rate between the nearest neighbor points. After an unconditionally stable explicit time discretization, the data-driven finite volume scheme gives an approximated Markov process for the Langevin dynamics on $\mathcal{N}$ and the approximated Markov process enjoys detailed balance, ergodicity, and other good properties.