论文标题
密集悬浮液的最小杂交润滑/颗粒动力学模型的实施说明
Implementation note on a minimal hybrid lubrication/granular dynamics model for dense suspensions
论文作者
论文摘要
我们描述并总结了一类最小数值模型,这些模型来自最新的模拟方法,用于过度阻尼线性流中的密集粒子悬浮液。主要成分包括(i)球形颗粒的框架不变,短距离润滑模型,以及(ii)当颗粒重叠时激活的软核,粘粘/滑动摩擦接触模型。我们使用修改的速度 - verlet算法实现模型的版本,该算法在$ \ MATHCAL {O}(o}(cn)$ operations中明确求解$ n $ body动态系统,其中$ c $是根据粒子交互的截止的核心不变。该实施是针对文献结果验证的,该结果障碍了过渡和剪切增厚的悬浮液从40%到64%的体积分数。对于非常浓缩的悬浮液,还建议将当前方法扩展到非球形颗粒的潜在策略。
We describe and summarize a class of minimal numerical models emerged from recent development of simulation methods for dense particle suspensions in overdamped linear flows. The main ingredients include (i) a frame-invariant, short-range lubrication model for spherical particles, and (ii) a soft-core, stick/slide frictional contact model activated when particles overlap. We implement a version of the model using a modified velocity-Verlet algorithm that explicitly solves the $N$-body dynamical system in $\mathcal{O}(cN)$ operations, where $c$ is a kernel constant depending on the cutoff of particle interactions. The implementation is validated against literature results on jamming transition and shear thickening suspensions from 40% to 64% volume fractions. Potential strategies to extend the present methodology to non-spherical particles are also suggested for very concentrated suspensions.