论文标题

关于多损失优化的全局融合的不可能

On the Impossibility of Global Convergence in Multi-Loss Optimization

论文作者

Letcher, Alistair

论文摘要

在轻度的规律性条件下,基于梯度的方法在全球范围内收敛到单损失设置的临界点。众所周知,这是在转向多损失优化时为香草梯度下降而分解的,但是我们可以希望构建具有全球保证的算法吗?我们通过证明所需的收敛属性不能同时存在任何算法来消极地解决这个开放问题。我们的结果与没有令人满意结果的游戏的存在更多,而不是与算法本身有关。更明确的是,我们构建了一个具有零和互动的两人游戏,其损失既具有强制性和分析性,又是唯一的同时关键点是严格的最大值。因此,任何定义为避免严格最大值的“合理”算法都将无法收敛。这与单个损失根本不同,在这种损失中,强制性意味着存在全球最低限度。此外,我们证明,在构造的零和零游戏中,几乎肯定有许多现有的基于梯度的方法,但无构成的迭代,以适当的学习率。尽管如此,ML从业人员(例如gans还是多代理RL)感兴趣的高维游戏中,这种行为仍然是一个悬而未决的问题。

Under mild regularity conditions, gradient-based methods converge globally to a critical point in the single-loss setting. This is known to break down for vanilla gradient descent when moving to multi-loss optimization, but can we hope to build some algorithm with global guarantees? We negatively resolve this open problem by proving that desirable convergence properties cannot simultaneously hold for any algorithm. Our result has more to do with the existence of games with no satisfactory outcomes, than with algorithms per se. More explicitly we construct a two-player game with zero-sum interactions whose losses are both coercive and analytic, but whose only simultaneous critical point is a strict maximum. Any 'reasonable' algorithm, defined to avoid strict maxima, will therefore fail to converge. This is fundamentally different from single losses, where coercivity implies existence of a global minimum. Moreover, we prove that a wide range of existing gradient-based methods almost surely have bounded but non-convergent iterates in a constructed zero-sum game for suitably small learning rates. It nonetheless remains an open question whether such behavior can arise in high-dimensional games of interest to ML practitioners, such as GANs or multi-agent RL.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源